Package 'BaseSet'

Title: Working with Sets the Tidy Way
Description: Implements a class and methods to work with sets, doing intersection, union, complementary sets, power sets, cartesian product and other set operations in a "tidy" way. These set operations are available for both classical sets and fuzzy sets. Import sets from several formats or from other several data structures.
Authors: Lluís Revilla Sancho [aut, cre, cph] , Zebulun Arendsee [rev], Jennifer Chang [rev]
Maintainer: Lluís Revilla Sancho <[email protected]>
License: MIT + file LICENSE
Version: 0.9.0.9002
Built: 2024-12-27 06:17:55 UTC
Source: https://github.com/ropensci/BaseSet

Help Index


Determine the context of subsequent manipulations.

Description

Functions to help to perform some action to just some type of data: elements, sets or relations. activate: To table the focus of future manipulations: elements, sets or relations. active: To check the focus on the TidySet. deactivate: To remove the focus on a specific TidySet-

Usage

activate(.data, what)

active(.data)

deactivate(.data)

Arguments

.data

A TidySet object.

what

Either "elements", "sets" or "relations"

Value

A TidySet object.

See Also

Other methods: TidySet-class, add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

relations <- data.frame(
    sets = c(rep("a", 5), "b", rep("a2", 5), "b2"),
    elements = rep(letters[seq_len(6)], 2),
    fuzzy = runif(12)
)
a <- tidySet(relations)
elements(a) <- cbind(elements(a),
    type = c(rep("Gene", 4), rep("lncRNA", 2))
)
# Filter in the whole TidySet
filter(a, elements == "a")
filter(a, elements == "a", type == "Gene")
# Equivalent to filter_elements
filter_element(a, type == "Gene")
a <- activate(a, "elements")
active(a)
filter(a, type == "Gene")
a <- deactivate(a)
active(a)
filter(a, type == "Gene")

Add column

Description

Add column to a slot of the TidySet object.

Usage

add_column(object, slot, columns)

## S4 method for signature 'TidySet,character'
add_column(object, slot, columns)

Arguments

object

A TidySet object.

slot

A TidySet slot.

columns

The columns to add.

Value

A TidySet object.

Methods (by class)

  • add_column(object = TidySet, slot = character): Add a column to any slot

See Also

rename_set()

Other column: remove_column()

Other methods: TidySet-class, activate(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

relations <- data.frame(
    sets = c(rep("a", 5), "b"),
    elements = letters[seq_len(6)],
    fuzzy = runif(6)
)
TS <- tidySet(relations)
add_column(TS, "relations", data.frame(well = c(
    "GOOD", "BAD", "WORSE",
    "UGLY", "FOE", "HEY"
)))

Add elements to a TidySet

Description

Functions to add elements. If the elements are new they are added, otherwise they are omitted.

Usage

add_elements(object, elements, ...)

Arguments

object

A TidySet object

elements

A character vector of the elements.

...

Placeholder for other arguments that could be passed to the method. Currently not used.

Value

A TidySet object with the new elements.

Note

add_element doesn't set up any other information about the elements. Remember to add/modify them if needed with mutate or mutate_element

See Also

Other add_*: add_relations(), add_sets()

Examples

x <- list("a" = letters[1:5], "b" = LETTERS[3:7])
a <- tidySet(x)
b <- add_elements(a, "fg")
elements(b)

Add relations

Description

Given a TidySet adds new relations between elements and sets.

Usage

add_relation(object, relations, ...)

## S4 method for signature 'TidySet,data.frame'
add_relation(object, relations)

Arguments

object

A TidySet object

relations

A data.frame object

...

Placeholder for other arguments that could be passed to the method. Currently not used.

Value

A TidySet object.

Methods (by class)

  • add_relation(object = TidySet, relations = data.frame): Adds relations

See Also

Other methods: TidySet-class, activate(), add_column(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

relations <- data.frame(
    sets = c(rep("A", 5), "B"),
    elements = letters[seq_len(6)],
    fuzzy = runif(6)
)
TS <- tidySet(relations)
relations <- data.frame(
    sets = c(rep("A2", 5), "B2"),
    elements = letters[seq_len(6)],
    fuzzy = runif(6),
    new = runif(6)
)
add_relation(TS, relations)

Add relations to a TidySet

Description

Adds new relations to existing or new sets and elements. If the sets or elements do not exist they are added.

Usage

add_relations(object, elements, sets, fuzzy, ...)

Arguments

object

A TidySet object

elements

A character vector of the elements.

sets

A character vector of sets to be added.

fuzzy

The strength of the membership.

...

Placeholder for other arguments that could be passed to the method. Currently not used.

Value

A TidySet object with the new relations.

Note

add_relations doesn't set up any other information about the relationship. Remember to add/modify them if needed with mutate or mutate_relation

See Also

add_relation() to add relations with new sets or/and new elements.

Other add_*: add_elements(), add_sets()

Examples

x <- list("a" = letters[1:5], "b" = LETTERS[3:7])
a <- tidySet(x)
add_relations(a, elements = c("a", "b", "g"), sets = "d")
add_relations(a, elements = c("a", "b"), sets = c("d", "g"))
add_relations(a, elements = c("a", "b"), sets = c("d", "g"), fuzzy = 0.5)
add_relations(a,
    elements = c("a", "b"), sets = c("d", "g"),
    fuzzy = c(0.5, 0.7)
)

Add sets to a TidySet

Description

Functions to add sets. If the sets are new they are added, otherwise they are omitted.

Usage

add_sets(object, sets, ...)

Arguments

object

A TidySet object

sets

A character vector of sets to be added.

...

Placeholder for other arguments that could be passed to the method. Currently not used.

Value

A TidySet object with the new sets.

Note

add_sets doesn't set up any other information about the sets. Remember to add/modify them if needed with mutate or mutate_set

See Also

Other add_*: add_elements(), add_relations()

Examples

x <- list("a" = letters[1:5], "b" = LETTERS[3:7])
a <- tidySet(x)
b <- add_sets(a, "fg")
sets(b)

Adjacency

Description

Are two elements connected ?

Usage

## S3 method for class 'TidySet'
adjacency(object)

adjacency_element(object)

adjacency_set(object)

## S3 method for class 'TidySet'
adjacency(object)

Arguments

object

A TidySet object

Value

A square matrix, 1 if two nodes are connected, 0 otherwise.

See Also

incidence()

Examples

x <- list("SET1" = letters[1:5], "SET2" = LETTERS[3:7])
a <- tidySet(x)
adjacency_element(a)
adjacency_set(a)

Arrange the order of a TidySet

Description

Use arrange to extract the columns of a TidySet object. You can use activate with filter or use the specific function. The S3 method filters using all the information on the TidySet.

Usage

## S3 method for class 'TidySet'
arrange(.data, ...)

arrange_set(.data, ...)

arrange_element(.data, ...)

arrange_relation(.data, ...)

Arguments

.data

The TidySet object

...

Comma separated list of variables names or expressions integer column position to be used to reorder the TidySet.

Value

A TidySet object

See Also

dplyr::arrange() and activate()

Other methods: TidySet-class, activate(), add_column(), add_relation(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

relations <- data.frame(
    sets = c(rep("A", 5), "B", rep("A2", 5), "B2"),
    elements = rep(letters[seq_len(6)], 2),
    fuzzy = runif(12)
)
a <- tidySet(relations)
a <- mutate_element(a,
    type = c(rep("Gene", 4), rep("lncRNA", 2))
)

b <- arrange(a, desc(type))
elements(b)
b <- arrange_element(a, elements)
elements(b)
# Arrange sets
arrange_set(a, sets)

Transforms a TidySet to a data.frame

Description

Flattens the three slots to a single big table

Usage

## S3 method for class 'TidySet'
as.data.frame(x, ...)

Arguments

x

The TidySet object.

...

Placeholder for other arguments that could be passed to the method. Currently not used.

Value

A data.frame table.


Convert to list

Description

Converts a TidySet to a list.

Usage

## S3 method for class 'TidySet'
as.list(x, ...)

Arguments

x

A TidySet object to be coerced to a list.

...

Placeholder for other arguments that could be passed to the method. Currently not used.

Value

A list.

Examples

r <- data.frame(sets = c("A", "A", "A", "B", "C"),
             elements = c(letters[1:3], letters[2:3]),
             fuzzy = runif(5),
             info = rep_len(c("important", "very important"), 5))
TS <- tidySet(r)
TS
as.list(TS)

Combine Values into a Vector or List

Description

This method combines TidySets. It only works if the first element is a TidySet.

Usage

## S4 method for signature 'TidySet'
c(x, ...)

Arguments

x

A TidySet object.

...

Objects to be concatenated. All NULL entries are dropped.

Examples

TS <- tidySet(list(A = letters[1:5], B = letters[6]))
TS2 <- c(TS, data.frame(sets = "C", elements = "gg"))

Cardinality or membership of sets

Description

Calculates the membership of sets according to the logic defined in FUN.

Usage

cardinality(object, sets = NULL, ...)

## S4 method for signature 'TidySet'
cardinality(object, sets, FUN = "sum", ...)

Arguments

object

A TidySet object.

sets

Character vector with the name of the sets.

...

Other arguments passed to FUN.

FUN

Function that returns a single numeric value given a vector of fuzzy values.

Methods (by class)

  • cardinality(TidySet): Cardinality of sets

See Also

size()

Examples

rel <- list(A = letters[1:3], B = letters[1:2])
TS <- tidySet(rel)
cardinality(TS, "A")

Create the cartesian product of two sets

Description

Given two sets creates new sets with one element of each set

Usage

cartesian(object, set1, set2, name = NULL, ...)

## S3 method for class 'TidySet'
cartesian(
  object,
  set1,
  set2,
  name = NULL,
  keep = TRUE,
  keep_relations = keep,
  keep_elements = keep,
  keep_sets = keep,
  ...
)

Arguments

object

A TidySet object.

set1, set2

The name of the sets to be used for the cartesian product

name

The name of the new set.

...

Placeholder for other arguments that could be passed to the method. Currently not used.

keep

A logical value if you want to keep.

keep_relations

A logical value if you wan to keep old relations.

keep_elements

A logical value if you wan to keep old elements.

keep_sets

A logical value if you wan to keep old sets.

Value

A TidySet object with the new set

See Also

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

relations <- data.frame(
    sets = c(rep("a", 5), "b"),
    elements = letters[seq_len(6)]
)
TS <- tidySet(relations)
cartesian(TS, "a", "b")

Complement TidySet

Description

Use complement to find elements or sets the TidySet object. You can use activate with complement or use the specific function. You must specify if you want the complements of sets or elements.

Usage

complement(.data, ...)

Arguments

.data

The TidySet object

...

Other arguments passed to either complement_set() or complement_element().

Value

A TidySet object

See Also

activate()

Other complements: complement_element(), complement_set(), subtract()

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

rel <- data.frame(
    sets = c("A", "A", "B", "B", "C", "C"),
    elements = letters[seq_len(6)],
    fuzzy = runif(6)
)
TS <- tidySet(rel)
TS %>%
    activate("elements") %>%
    complement("a")
TS %>%
    activate("elements") %>%
    complement("a", "C_a", keep = FALSE)
TS %>%
    activate("set") %>%
    complement("A")
TS %>%
    activate("set") %>%
    complement("A", keep = FALSE)
TS %>%
    activate("set") %>%
    complement("A", FUN = function(x){abs(x - 0.2)}, keep = FALSE)

Complement of elements

Description

Return the objects without the elements listed

Usage

complement_element(object, elements, ...)

## S4 method for signature 'TidySet,characterORfactor'
complement_element(
  object,
  elements,
  name = NULL,
  FUN = NULL,
  keep = TRUE,
  keep_relations = keep,
  keep_elements = keep,
  keep_sets = keep
)

Arguments

object

A TidySet object.

elements

The set to look for the complement.

...

Placeholder for other arguments that could be passed to the method. Currently not used.

name

Name of the new set. By default it adds a "C".

FUN

A function to be applied when performing the union. The standard union is the "max" function, but you can provide any other function that given a numeric vector returns a single number.

keep

Logical value to keep all the other sets.

keep_relations

A logical value if you wan to keep old relations.

keep_elements

A logical value if you wan to keep old elements.

keep_sets

A logical value if you wan to keep old sets.

Value

A TidySet object.

Methods (by class)

  • complement_element(object = TidySet, elements = characterORfactor): Complement of the elements.

See Also

Other complements: complement_set(), complement(), subtract()

Other methods that create new sets: complement_set(), intersection(), subtract(), union()

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

relations <- data.frame(
    sets = c("A", "A", "B", "B", "C", "C"),
    elements = letters[seq_len(6)],
    fuzzy = runif(6)
)
TS <- tidySet(relations)
complement_element(TS, "a", "C_a")
complement_element(TS, "a", "C_a", keep = FALSE)

Complement of a set

Description

Return the complement for a set

Usage

complement_set(object, sets, ...)

## S4 method for signature 'TidySet,characterORfactor'
complement_set(
  object,
  sets,
  name = NULL,
  FUN = NULL,
  keep = TRUE,
  keep_relations = keep,
  keep_elements = keep,
  keep_sets = keep
)

Arguments

object

A TidySet object.

sets

The name of the set to look for the complement.

...

Placeholder for other arguments that could be passed to the method. Currently not used.

name

Name of the new set. By default it adds a "C".

FUN

A function to be applied when performing the union. The standard union is the "max" function, but you can provide any other function that given a numeric vector returns a single number.

keep

Logical value to keep all the other sets.

keep_relations

A logical value if you wan to keep old relations.

keep_elements

A logical value if you wan to keep old elements.

keep_sets

A logical value if you wan to keep old sets.

Value

A TidySet object.

Methods (by class)

  • complement_set(object = TidySet, sets = characterORfactor): Complement of the sets.

See Also

filter()

Other complements: complement_element(), complement(), subtract()

Other methods that create new sets: complement_element(), intersection(), subtract(), union()

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

relations <- data.frame(
    sets = c("A", "A", "B", "B", "C", "C"),
    elements = letters[seq_len(6)],
    fuzzy = runif(6)
)
TS <- tidySet(relations)
complement_set(TS, "A")

Dimnames of a TidySet

Description

Retrieve the column names of the slots of a TidySet.

Usage

## S3 method for class 'TidySet'
dimnames(x)

Arguments

x

A TidySet object.

Value

A list with the names of the columns of the sets, elements and relations.

See Also

names()

Examples

relations <- data.frame(
    sets = c(rep("a", 5), "b"),
    elements = letters[seq_len(6)],
    fuzzy = runif(6)
)
TS <- tidySet(relations)
dimnames(TS)

Drop unused elements and sets

Description

Drop elements and sets without any relation.

Usage

## S3 method for class 'TidySet'
droplevels(x, elements = TRUE, sets = TRUE, relations = TRUE, ...)

Arguments

x

A TidySet object.

elements

Logical value: Should elements be dropped?

sets

Logical value: Should sets be dropped?

relations

Logical value: Should sets be dropped?

...

Other arguments, currently ignored.

Value

A TidySet object.

Examples

rel <- list(A = letters[1:3], B = character())
TS <- tidySet(rel)
TS
sets(TS)
TS2 <- droplevels(TS)
TS2
sets(TS2)

Calculates the size of the elements

Description

Assuming that the fuzzy values are probabilities, calculates the probability of being of different sizes for a given set.

Usage

element_size(object, elements = NULL)

## S4 method for signature 'TidySet'
element_size(object, elements = NULL)

Arguments

object

A TidySet object.

elements

The element from which the length is calculated.

Value

A list with the size of the elements or the probability of having that size.

Methods (by class)

  • element_size(TidySet): Calculates the number of sets an element appears with length_set()

See Also

cardinality

Other sizes: set_size()

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

relations <- data.frame(
    sets = c(rep("A", 5), "B", "C"),
    elements = c(letters[seq_len(6)], letters[6]),
    fuzzy = runif(7)
)
a <- tidySet(relations)
element_size(a)

Elements of the TidySet

Description

Given TidySet retrieve the elements or substitute them.

Usage

elements(object)

elements(object) <- value

## S4 method for signature 'TidySet'
elements(object)

## S4 replacement method for signature 'TidySet'
elements(object) <- value

replace_elements(object, value)

## S4 method for signature 'TidySet,missing'
nElements(object)

## S4 method for signature 'TidySet,logical'
nElements(object, all)

Arguments

object

A TidySet object.

value

Modification of the elements.

all

A logical value to count all elements or just those present.

Value

A data.frame with information about the elements

Methods (by class)

  • elements(TidySet): Retrieve the elements

  • elements(TidySet) <- value: Modify the elements

  • nElements(object = TidySet, all = missing): Return the number of elements

  • nElements(object = TidySet, all = logical): Return the number of elements

See Also

nElements()

Other slots: relations(), sets()

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

TS <- tidySet(list(A = letters[1:5], B = letters[2:10]))
elements(TS)
elements(TS) <- data.frame(elements = letters[10:1])
TS2 <- replace_elements(TS, data.frame(elements = letters[1:11]))
nElements(TS)
nElements(TS2)

Extract

Description

Operators acting on TidySet to extract or replace parts. They are designed to resemble the basic operators.

Usage

## S4 method for signature 'TidySet'
x$name

## S4 replacement method for signature 'TidySet'
x$name <- value

## S4 method for signature 'TidySet'
x[i, j, k, ..., drop = TRUE]

## S4 replacement method for signature 'TidySet'
x[i, j, k, ...] <- value

## S4 method for signature 'TidySet'
x[[i, j, ..., exact = TRUE]]

## S4 replacement method for signature 'TidySet'
x[[i]] <- value

Arguments

x

A TidySet object.

name

The data about the TidySet object to extract.

value

The value to overwrite

i

Which rows do you want to keep? By default all.

j

Which slot do you want to extract? One of "sets", "elements" or "relations".

k

Which columns do you want to extract. By default all.

...

Other arguments currently ignored.

drop

Remove remaining elements, sets and relations? Passed to all arguments of droplevels().

exact

A logical value. FALSE if fuzzy matching is wanted. Add values to the TidySet. Allows to control to which slot is it added.

Value

Always returns a valid TidySet.

Examples

TS <- tidySet(list(A = letters[1:5], B = letters[6]))
TS[, "sets", "origin"] <- sample(c("random", "non-random"), 2, replace = TRUE)
TS[, "sets", "type"] <- c("Fantastic", "Wonderful")
# This produces a warning
# TS$description <- c("What", "can", "I", "say", "now", "?")
# Better to be explicit:
TS[, "relations", "description"] <- c("What", "can", "I", "say", "now", "?")
relations(TS)
TS[, "elements", "description"] <- rev(c("What", "can", "I", "say", "now", "?"))
elements(TS)
# Which will be deleted?
# TS$description <- NULL
TS$type
TS$origin <- c("BCN", "BDN")
# Different subsets
TS[1, "elements"]
TS[1, "sets"]
# Always print
TS
TS[, "sets", c("type", "origin")] # Same
TS[, "sets", "origin"] # Drop column type
is(TS[, "sets", "origin"])
TS[, "sets"]
TS[["A"]]
TS[["B"]]
TS[["C"]] # Any other set is the empty set

Filter TidySet

Description

Use filter to subset the TidySet object. You can use activate with filter or use the specific function. The S3 method filters using all the information on the TidySet.

Usage

## S3 method for class 'TidySet'
filter(.data, ...)

filter_set(.data, ...)

filter_element(.data, ...)

filter_relation(.data, ...)

Arguments

.data

The TidySet object.

...

The logical predicates in terms of the variables of the sets.

Value

A TidySet object.

See Also

dplyr::filter() and activate()

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

relations <- data.frame(
    sets = c(rep("a", 5), "b", rep("a2", 5), "b2"),
    elements = rep(letters[seq_len(6)], 2),
    fuzzy = runif(12),
    type = c(rep("Gene", 4), rep("lncRNA", 2))
)
TS <- tidySet(relations)
TS <- move_to(TS, from = "relations", to = "elements", column = "type")
filter(TS, elements == "a")
# Equivalent to filter_relation
filter(TS, elements == "a", sets == "a")
filter_relation(TS, elements == "a", sets == "a")
# Filter element
filter_element(TS, type == "Gene")
# Filter sets and by property of elements simultaneously
filter(TS, sets == "b", type == "lncRNA")
# Filter sets
filter_set(TS, sets == "b")

Read a GAF file

Description

Read a GO Annotation File (GAF) formatted file

Usage

getGAF(x)

Arguments

x

A file in GAF format

Value

A TidySet object

References

The format is defined here.

See Also

Other IO functions: getGMT(), getOBO()

Examples

gafFile <- system.file(
    package = "BaseSet", "extdata",
    "go_human_rna_valid_subset.gaf"
)
gs <- getGAF(gafFile)
head(gs)

Import GMT (Gene Matrix Transposed) files

Description

The GMT (Gene Matrix Transposed) file format is a tab delimited file format that describes groups of genes. In this format, each row represents a group. Each group is described by a name, a description, and the genes in it.

Usage

getGMT(con, sep = "\t", ...)

Arguments

con

File name of the GMT file.

sep

GMT file field separator, by default tabs.

...

Other arguments passed to readLines.

Value

A TidySet object.

References

The file format is defined by the Broad Institute here

See Also

Other IO functions: getGAF(), getOBO()

Examples

gmtFile <- system.file(
    package = "BaseSet", "extdata",
    "hallmark.gene.symbol.gmt"
)
gs <- getGMT(gmtFile)
nRelations(gs)
nElements(gs)
nSets(gs)

Read an OBO file

Description

Read an Open Biological and Biomedical Ontologies (OBO) formatted file

Usage

getOBO(x)

Arguments

x

Path to a file in OBO format.

Value

A TidySet object.

References

The format is described here

See Also

Other IO functions: getGAF(), getGMT()

Examples

oboFile <- system.file(
    package = "BaseSet", "extdata",
    "go-basic_subset.obo"
)
gs <- getOBO(oboFile)
head(gs)

Create a new set from existing elements

Description

It allows to create a new set given some condition. If no element meet the condition an empty set is created.

Usage

group(object, name, ...)

## S3 method for class 'TidySet'
group(object, name, ...)

Arguments

object

A TidySet object.

name

The name of the new set.

...

A logical condition to subset some elements.

Value

A TidySet object with the new set.

See Also

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

x <- list("A" = c("a" = 0.1, "b" = 0.5), "B" = c("a" = 0.2, "b" = 1))
TS <- tidySet(x)
TS1 <- group(TS, "C", fuzzy < 0.5)
TS1
sets(TS1)
TS2 <- group(TS, "D", fuzzy < 0)
sets(TS2)
r <- data.frame(
    sets = c(rep("A", 5), "B", rep("A2", 5), "B2"),
    elements = rep(letters[seq_len(6)], 2),
    fuzzy = runif(12),
    type = c(rep("Gene", 2), rep("Protein", 2), rep("lncRNA", 2))
)
TS3 <- tidySet(r)
group(TS3, "D", sets %in% c("A", "A2"))

group_by TidySet

Description

Use group_by to group the TidySet object. You can use activate with group_by or with the whole data.

Usage

## S3 method for class 'TidySet'
group_by(.data, ...)

Arguments

.data

The TidySet object

...

The logical predicates in terms of the variables of the sets

Value

A grouped data.frame (See The dplyr help page)

See Also

dplyr::group_by() and activate()

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

relations <- data.frame(
    sets = c(rep("a", 5), "b", rep("a2", 5), "b2"),
    elements = rep(letters[seq_len(6)], 2),
    fuzzy = runif(12)
)
a <- tidySet(relations)
elements(a) <- cbind(elements(a),
    type = c(rep("Gene", 4), rep("lncRNA", 2))
)
group_by(a, elements)

Incidence

Description

Check which elements are in which sets.

Usage

incidence(object)

## S4 method for signature 'TidySet'
incidence(object)

Arguments

object

Object to be coerced or tested.

Value

A matrix with elements in rows and sets in columns where the values indicate the relationship between the element and the set.

Methods (by class)

  • incidence(TidySet): Incidence of the TidySet

See Also

adjacency(), tidySet()

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

x <- list("a" = letters[1:5], "b" = LETTERS[3:7])
a <- tidySet(x)
incidence(a)

Independence of the sets

Description

Checks if the elements of the sets are present in more than one set.

Usage

independent(object, sets)

Arguments

object

A TidySet object.

sets

A character vector with the names of the sets to analyze.

Value

A logical value indicating if the sets are independent (TRUE) or not.

Examples

x <- list("A" = letters[1:5], "B" = letters[3:7], "C" = letters[6:10])
TS <- tidySet(x)
independent(TS)
independent(TS, c("A", "B"))
independent(TS, c("A", "C"))
independent(TS, c("B", "C"))

Intersection of two or more sets

Description

Given a TidySet creates a new set with the elements on the both of them following the logic defined on FUN.

Usage

intersection(object, sets, ...)

## S4 method for signature 'TidySet,character'
intersection(
  object,
  sets,
  name = NULL,
  FUN = "min",
  keep = FALSE,
  keep_relations = keep,
  keep_elements = keep,
  keep_sets = keep,
  ...
)

Arguments

object

A TidySet object.

sets

The character of sets to be intersect.

...

Other named arguments passed to FUN.

name

The name of the new set. By defaults joins the sets with an ∪.

FUN

A function to be applied when performing the union. The standard intersection is the "min" function, but you can provide any other function that given a numeric vector returns a single number.

keep

A logical value if you want to keep originals sets.

keep_relations

A logical value if you wan to keep old relations.

keep_elements

A logical value if you wan to keep old elements.

keep_sets

A logical value if you wan to keep old sets.

Details

#' The default uses the min function following the standard fuzzy definition, but it can be changed.

Value

A TidySet object.

Methods (by class)

  • intersection(object = TidySet, sets = character): Applies the standard intersection

See Also

Other methods that create new sets: complement_element(), complement_set(), subtract(), union()

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

rel <- data.frame(
    sets = c(rep("A", 5), "B"),
    elements = c("a", "b", "c", "d", "f", "f")
)
TS <- tidySet(rel)
intersection(TS, c("A", "B")) # Default Name
intersection(TS, c("A", "B"), "C") # Set the name
# Fuzzy set
rel <- data.frame(
    sets = c(rep("A", 5), "B"),
    elements = c("a", "b", "c", "d", "f", "f"),
    fuzzy = runif(6)
)
TS2 <- tidySet(rel)
intersection(TS2, c("A", "B"), "C")
intersection(TS2, c("A", "B"), "C", FUN = function(x){max(sqrt(x))})

Are some sets as elements of other sets?

Description

Check if some elements are also sets of others. This is also known as hierarchical sets.

Usage

is_nested(object)

## S3 method for class 'TidySet'
is_nested(object)

Arguments

object

A TidySet object.

Value

A logical value: TRUE if there are some sets included as elements of others.

See Also

adjacency

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

relations <- list(A = letters[1:3], B = c(letters[4:5]))
TS <- tidySet(relations)
is_nested(TS)
TS2 <- add_relation(TS, data.frame(elements = "A", sets = "B"))
# Note that A is both a set and an element of B
TS2
is_nested(TS2)

Check if a TidySet is fuzzy.

Description

Check if there are fuzzy sets. A fuzzy set is a set where the relationship between elements is given by a probability (or uncertainty).

Usage

is.fuzzy(object)

## S4 method for signature 'TidySet'
is.fuzzy(object)

Arguments

object

Object to be coerced or tested.

Value

A logical value.

Methods (by class)

  • is.fuzzy(TidySet): Check if it is fuzzy

See Also

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

TS <- tidySet(list(A = letters[1:5], B = letters[2:10]))
is.fuzzy(TS)

Calculates the probability

Description

Given several probabilities it looks for how probable is to have a vector of each length

Usage

length_set(probability)

Arguments

probability

A numeric vector of probabilities.

Value

A vector with the probability of each set.

See Also

length_probability() to calculate the probability of a specific length.

Examples

length_set(c(0.5, 0.1, 0.3, 0.5, 0.25, 0.23))

Length of the TidySet

Description

Returns the number of sets in the object.

Usage

## S3 method for class 'TidySet'
length(x)

Arguments

x

A TidySet object.

No replacement function is available, either delete sets or add them.

Value

A numeric value.

See Also

dim(), ncol() and nrow(). Also look at lengths() for the number of relations of sets.

Examples

TS <- tidySet(list(A = letters[1:5], B = letters[6]))
length(TS)

Lengths of the TidySet

Description

Returns the number of relations of each set in the object.

Usage

## S4 method for signature 'TidySet'
lengths(x, use.names = TRUE)

Arguments

x

A TidySet object.

use.names

A logical value whether to inherit names or not.

Value

A vector with the number of different relations for each set.

See Also

length(), Use set_size() if you are using fuzzy sets.

Examples

TS <- tidySet(list(A = letters[1:5], B = letters[6]))
lengths(TS)

Move columns between slots

Description

Moves information from one slot to other slots. For instance from the sets to the relations.

Usage

move_to(object, from, to, columns)

## S4 method for signature 
## 'TidySet,characterORfactor,characterORfactor,character'
move_to(object, from, to, columns)

Arguments

object

A TidySet object.

from

The name of the slot where the content is.

to

The name of the slot to move the content.

columns

The name of the columns that should be moved.

Value

A TidySet object where the content is moved from one slot to other.

Methods (by class)

  • move_to( object = TidySet, from = characterORfactor, to = characterORfactor, columns = character ): Move columns

See Also

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

x <- list("A" = c("a" = 0.1, "b" = 0.5), "B" = c("a" = 0.2, "b" = 1))
TS <- tidySet(x)
TS <- mutate_element(TS, b = runif(2))
TS2 <- move_to(TS, from = "elements", to = "relations", "b")
# Note that apparently we haven't changed anything:
TS2

Probability of a vector of probabilities

Description

Calculates the probability that all probabilities happened simultaneously. independent_probabilities() just multiply the probabilities of the index passed.

Usage

multiply_probabilities(p, i)

independent_probabilities(p, i)

Arguments

p

Numeric vector of probabilities.

i

Numeric integer index of the complementary probability.

Value

A numeric value of the probability.

See Also

length_probability()

Examples

multiply_probabilities(c(0.5, 0.1, 0.3, 0.5, 0.25, 0.23), c(1, 3))
independent_probabilities(c(0.5, 0.1, 0.3, 0.5, 0.25, 0.23), c(1, 3))

Mutate

Description

Use mutate to alter the TidySet object. You can use activate with mutate or use the specific function. The S3 method filters using all the information on the TidySet.

Usage

## S3 method for class 'TidySet'
mutate(.data, ...)

mutate_set(.data, ...)

mutate_element(.data, ...)

mutate_relation(.data, ...)

Arguments

.data

The TidySet object.

...

The logical predicates in terms of the variables of the sets.

Value

A TidySet object

See Also

dplyr::mutate() and activate()

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

relations <- data.frame(
    sets = c(rep("a", 5), "b", rep("a2", 5), "b2"),
    elements = rep(letters[seq_len(6)], 2),
    fuzzy = runif(12)
)
a <- tidySet(relations)
a <- mutate_element(a, Type = c(rep("Gene", 4), rep("lncRNA", 2)))
a
b <- mutate_relation(a, Type = sample(c("PPI", "PF", "MP"), 12,
    replace = TRUE
))

Name elements

Description

Retrieve the name of the elements.

Usage

name_elements(object, all, ...)

## S4 method for signature 'TidySet,logical'
name_elements(object, all = TRUE)

## S4 method for signature 'TidySet,missing'
name_elements(object, all)

## S4 replacement method for signature 'TidySet,logical,characterORfactor'
name_elements(object, all) <- value

## S4 replacement method for signature 'TidySet,missing,characterORfactor'
name_elements(object) <- value

Arguments

object

A TidySet object.

all

A logical value if all elements should be reported or only those present.

...

Other arguments passed to methods.

value

A character with the new names for the elements.

Value

A TidySet object.

Methods (by class)

  • name_elements(object = TidySet, all = logical): Name elements

  • name_elements(object = TidySet, all = missing): Name elements

  • name_elements(object = TidySet, all = logical) <- value: Rename elements

  • name_elements(object = TidySet, all = missing) <- value: Rename elements

See Also

Other names: name_elements<-(), name_sets<-(), name_sets(), rename_elements(), rename_set()

Examples

relations <- data.frame(
    sets = c(rep("A", 5), "B"),
    elements = letters[seq_len(6)],
    fuzzy = runif(6)
)
TS <- tidySet(relations)
name_elements(TS)

Rename elements

Description

Rename elements.

Usage

name_elements(object, all, ...) <- value

Arguments

object

A TidySet object.

all

A logical value whether to return all elements or just those present.

...

Other arguments passed to methods.

value

A character with the new names for the elements.

Value

A TidySet object.

See Also

rename_elements()

Other names: name_elements(), name_sets<-(), name_sets(), rename_elements(), rename_set()

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

relations <- data.frame(
    sets = c(rep("A", 5), "B"),
    elements = letters[seq_len(6)],
    fuzzy = runif(6)
)
TS <- tidySet(relations)
TS
name_elements(TS) <- letters[1:6]

Name sets

Description

Retrieve the name of the sets.

Usage

name_sets(object, all, ...)

## S4 method for signature 'TidySet,logical'
name_sets(object, all = TRUE)

## S4 method for signature 'TidySet,missing'
name_sets(object, all)

## S4 replacement method for signature 'TidySet,logical,characterORfactor'
name_sets(object, all) <- value

## S4 replacement method for signature 'TidySet,missing,characterORfactor'
name_sets(object, all) <- value

Arguments

object

A TidySet object.

all

A logical value if all sets should be reported or only those present.

...

Other arguments passed to methods.

value

A character with the new names for the sets.

Value

A TidySet object.

Methods (by class)

  • name_sets(object = TidySet, all = logical): Name sets

  • name_sets(object = TidySet, all = missing): Name sets

  • name_sets(object = TidySet, all = logical) <- value: Rename sets

  • name_sets(object = TidySet, all = missing) <- value: Rename sets

See Also

Other names: name_elements<-(), name_elements(), name_sets<-(), rename_elements(), rename_set()

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

relations <- data.frame(
    sets = c(rep("A", 5), "B"),
    elements = letters[seq_len(6)],
    fuzzy = runif(6)
)
TS <- tidySet(relations)
name_sets(TS)

Rename sets

Description

Rename sets.

Usage

name_sets(object, all, ...) <- value

Arguments

object

A TidySet object.

all

A logical value whether it should return all sets present.

...

Other arguments passed to methods.

value

A character with the new names for the sets.

Value

A TidySet object.

See Also

rename_set()

Other names: name_elements<-(), name_elements(), name_sets(), rename_elements(), rename_set()

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

relations <- data.frame(
    sets = c(rep("a", 5), "b"),
    elements = letters[seq_len(6)],
    fuzzy = runif(6)
)
TS <- tidySet(relations)
TS
name_sets(TS) <- LETTERS[1:2]

Names of a TidySet

Description

Retrieve the column names of a slots of a TidySet.

Usage

## S3 method for class 'TidySet'
names(x)

Arguments

x

A TidySet object.

Value

A vector with the names of the present columns of the sets, elements and relations. If a slot is active it only returns the names of that slot.

See Also

dimnames()

Examples

relations <- data.frame(
    sets = c(rep("a", 5), "b"),
    elements = letters[seq_len(6)],
    fuzzy = runif(6)
)
TS <- tidySet(relations)
names(TS)
names(activate(TS, "sets"))

Name an operation

Description

Helps setting up the name of an operation.

Usage

naming(
  start = NULL,
  sets1,
  middle = NULL,
  sets2 = NULL,
  collapse_symbol = "union"
)

Arguments

start, middle

Character used as a start symbol or to divide sets1 and sets2.

sets1, sets2

Character of sets

collapse_symbol

Name of the symbol that joins the sets on sets1 and sets2.

Value

A character vector combining the sets

See Also

set_symbols()

Examples

naming(sets1 = c("a", "b"))
naming(sets1 = "a", middle = "union", sets2 = "b")
naming(sets1 = "a", middle = "intersection", sets2 = c("b", "c"))
naming(sets1 = "a", middle = "intersection", sets2 = c("b", "c"))
naming(
    start = "complement", sets1 = "a", middle = "intersection",
    sets2 = c("b", "c"), collapse_symbol = "intersection"
)

Number of elements

Description

Check the number of elements of the TidySet.

Usage

nElements(object, all)

Arguments

object

Object to be coerced or tested.

all

Logical value to count all elements.

Value

A numeric value with the number of elements.

See Also

Other count functions: nRelations(), nSets()

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

TS <- tidySet(list(A = letters[1:2], B = letters[5:7]))
nElements(TS)

Number of relations

Description

Check the number of relations of the TidySet.

Usage

nRelations(object)

Arguments

object

Object to be coerced or tested.

Value

A numeric value with the number of the relations.

See Also

Other count functions: nElements(), nSets()

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

TS <- tidySet(list(A = letters[1:2], B = letters[5:7]))
nRelations(TS)

Number of sets

Description

Check the number of sets of the TidySet

Usage

nSets(object, all)

Arguments

object

Object to be coerced or tested.

all

Logical value to count all sets.

Value

The number of sets present.

See Also

Other count functions: nElements(), nRelations()

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

TS <- tidySet(list(A = letters[1:2], B = letters[5:7]))
nSets(TS)

Create the power set

Description

Create the power set of the object: All the combinations of the elements of the sets.

Usage

power_set(object, set, name, ...)

Arguments

object

A TidySet object.

set

The name of the set to be used for the power set, if not provided all are used.

name

The root name of the new set, if not provided the standard notation "P()" is used.

...

Other arguments passed down if possible.

Value

A TidySet object with the new set.

See Also

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

relations <- data.frame(
    sets = c(rep("a", 5), "b"),
    elements = letters[seq_len(6)]
)
TS <- tidySet(relations)
power_set(TS, "a", name = "power_set")

Pull from a TidySet

Description

Use pull to extract the columns of a TidySet object. You can use activate with filter or use the specific function. The S3 method filters using all the information on the TidySet.

Usage

## S3 method for class 'TidySet'
pull(.data, var = -1, name = NULL, ...)

pull_set(.data, var = -1, name = NULL, ...)

pull_element(.data, var = -1, name = NULL, ...)

pull_relation(.data, var = -1, name = NULL, ...)

Arguments

.data

The TidySet object

var

The literal variable name, a positive integer or a negative integer column position.

name

Column used to name the output.

...

Currently not used.

Value

A TidySet object

See Also

dplyr::pull() and activate()

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

relations <- data.frame(
    sets = c(rep("a", 5), "b", rep("a2", 5), "b2"),
    elements = rep(letters[seq_len(6)], 2),
    fuzzy = runif(12)
)
a <- tidySet(relations)
a <- mutate_element(a, type = c(rep("Gene", 4), rep("lncRNA", 2)))
pull(a, type)
# Equivalent to pull_relation
b <- activate(a, "relations")
pull_relation(b, elements)
pull_element(b, elements)
# Filter element
pull_element(a, type)
# Filter sets
pull_set(a, sets)

Relations of the TidySet

Description

Given TidySet retrieve the relations or substitute them. TidySet() object

Usage

relations(object)

relations(object) <- value

## S4 method for signature 'TidySet'
relations(object)

replace_relations(object, value)

## S4 replacement method for signature 'TidySet'
relations(object) <- value

## S4 method for signature 'TidySet'
nRelations(object)

Arguments

object

Object to be coerced or tested.

value

Modification of the relations.

Value

A data.frame with information about the relations between elements and sets.

Methods (by class)

  • relations(TidySet): Retrieve the relations

  • relations(TidySet) <- value: Modify the relations

  • nRelations(TidySet): Return the number of unique relations

See Also

nRelations()

Other slots: elements(), sets()

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

TS <- tidySet(list(A = letters[1:2], B = letters[5:7]))
relations(TS)

Remove column

Description

Removes column from a slot of the TidySet object.

Usage

remove_column(object, slot, column_names)

## S4 method for signature 'TidySet,character,character'
remove_column(object, slot, column_names)

Arguments

object

A TidySet object.

slot

A TidySet slot.

column_names

The name of the columns.

Value

A TidySet object.

Methods (by class)

  • remove_column(object = TidySet, slot = character, column_names = character): Remove columns to any slot

See Also

rename_set()

Other column: add_column()

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

x <- data.frame(sets = c(rep("A", 5), rep("B", 5)),
                elements = c(letters[1:5], letters[3:7]),
                extra = sample(c("YES", "NO"), 10, replace = TRUE))
TS <- tidySet(x)
TS
remove_column(TS, "relations", "extra")

Remove elements

Description

Given a TidySet remove elements and the related relations and if required also the sets.

Usage

remove_element(object, elements, ...)

## S4 method for signature 'TidySet,characterORfactor'
remove_element(object, elements)

Arguments

object

A TidySet object.

elements

The elements to be removed.

...

Placeholder for other arguments that could be passed to the method. Currently not used.

Value

A TidySet object.

Methods (by class)

  • remove_element(object = TidySet, elements = characterORfactor): Removes everything related to an element

See Also

Other remove functions: remove_relation(), remove_set()

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

relations <- data.frame(
    sets = c(rep("A", 5), "B"),
    elements = letters[seq_len(6)],
    fuzzy = runif(6)
)
TS <- tidySet(relations)
remove_element(TS, "c")

Remove a relation

Description

Given a TidySet removes relations between elements and sets

Usage

remove_relation(object, elements, sets, ...)

## S4 method for signature 'TidySet,characterORfactor,characterORfactor'
remove_relation(object, elements, sets)

Arguments

object

A TidySet object

elements

The elements of the sets.

sets

The name of the new set.

...

Placeholder for other arguments that could be passed to the method. Currently not used.

Value

A TidySet object.

Methods (by class)

  • remove_relation( object = TidySet, elements = characterORfactor, sets = characterORfactor ): Removes a relation between elements and sets.

See Also

Other remove functions: remove_element(), remove_set()

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

relations <- data.frame(
    sets = c(rep("A", 5), "B"),
    elements = letters[seq_len(6)],
    fuzzy = runif(6)
)
TS <- tidySet(relations)
remove_relation(TS, "A", "a")

Remove sets

Description

Given a TidySet remove sets and the related relations and if required also the elements

Usage

remove_set(object, sets, ...)

## S4 method for signature 'TidySet,characterORfactor'
remove_set(object, sets)

Arguments

object

A TidySet object.

sets

The sets to be removed.

...

Placeholder for other arguments that could be passed to the method. Currently not used.

Value

A TidySet object.

Methods (by class)

  • remove_set(object = TidySet, sets = characterORfactor): Removes everything related to a set

See Also

Other remove functions: remove_element(), remove_relation()

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

relations <- data.frame(
    sets = c("A", "A", "B", "B", "C", "C"),
    elements = letters[seq_len(6)],
    fuzzy = runif(6)
)
TS <- tidySet(relations)
remove_set(TS, "B")

Rename elements

Description

Change the default names of sets and elements.

Usage

rename_elements(object, old, new)

## S4 method for signature 'TidySet'
rename_elements(object, old, new)

Arguments

object

A TidySet object.

old

A character vector of to be renamed.

new

A character vector of with new names.

Value

A TidySet object.

Methods (by class)

  • rename_elements(TidySet): Rename elements

See Also

name_elements()

Other renames: rename_set()

Other names: name_elements<-(), name_elements(), name_sets<-(), name_sets(), rename_set()

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

x <- list("A" = letters[1:5], "B" = letters[3:7])
TS <- tidySet(x)
name_elements(TS)
TS2 <- rename_elements(TS, "a", "first")
name_elements(TS2)

Rename sets

Description

Change the default names of sets and elements.

Usage

rename_set(object, old, new)

## S4 method for signature 'TidySet'
rename_set(object, old, new)

Arguments

object

A TidySet object.

old

A character vector of to be renamed.

new

A character vector of with new names.

Value

A TidySet object.

Methods (by class)

  • rename_set(TidySet): Rename sets

See Also

name_sets()

Other renames: rename_elements()

Other names: name_elements<-(), name_elements(), name_sets<-(), name_sets(), rename_elements()

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

x <- list("A" = letters[1:5], "B" = letters[3:7])
TS <- tidySet(x)
name_sets(TS)
TS2 <- rename_set(TS, "A", "C")
name_sets(TS2)

select from a TidySet

Description

Use select to extract the columns of a TidySet object. You can use activate with filter or use the specific function. The S3 method filters using all the information on the TidySet.

Usage

## S3 method for class 'TidySet'
select(.data, ...)

select_set(.data, ...)

select_element(.data, ...)

select_relation(.data, ...)

Arguments

.data

The TidySet object

...

The name of the columns you want to keep, remove or rename.

Value

A TidySet object

See Also

dplyr::select() and activate()

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), set_size(), sets(), subtract(), union()

Examples

relations <- data.frame(
    sets = c(rep("a", 5), "b", rep("a2", 5), "b2"),
    elements = rep(letters[seq_len(6)], 2),
    fuzzy = runif(12)
)
a <- tidySet(relations)
a <- mutate_element(a,
    type = c(rep("Gene", 4), rep("lncRNA", 2))
)
a <- mutate_set(a, Group = c("UFM", "UAB", "UPF", "MIT"))
b <- select(a, -type)
elements(b)
b <- select_element(a, elements)
elements(b)
# Select sets
select_set(a, sets)

Calculates the size of a set

Description

Assuming that the fuzzy values are probabilities, calculates the probability of being of different sizes for a given set.

Usage

set_size(object, sets = NULL)

## S4 method for signature 'TidySet'
set_size(object, sets = NULL)

Arguments

object

A TidySet object.

sets

The sets from which the length is calculated.

Value

A list with the size of the set or the probability of having that size.

Methods (by class)

  • set_size(TidySet): Calculates the size of a set using length_set()

See Also

cardinality

Other sizes: element_size()

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), sets(), subtract(), union()

Examples

relations <- data.frame(
    sets = c(rep("A", 5), "B", "C"),
    elements = c(letters[seq_len(6)], letters[6]),
    fuzzy = runif(7)
)
a <- tidySet(relations)
set_size(a)

A subset of symbols related to sets

Description

Name and symbol of operations related to sets, including intersection and union among others:

Usage

set_symbols

Format

An object of class character of length 16.

References

https://www.fileformat.info/info/unicode/category/Sm/list.htm

Examples

set_symbols

Sets of the TidySet

Description

Given TidySet retrieve the sets or substitute them.

Usage

sets(object)

sets(object) <- value

## S4 method for signature 'TidySet'
sets(object)

## S4 replacement method for signature 'TidySet'
sets(object) <- value

replace_sets(object, value)

## S4 method for signature 'TidySet,missing'
nSets(object)

## S4 method for signature 'TidySet,logical'
nSets(object, all)

Arguments

object

A TidySet object.

value

Modification of the sets.

all

A logical value whether it should return all sets or only those present.

Value

A data.frame with information from the sets.

Methods (by class)

  • sets(TidySet): Retrieve the sets information

  • sets(TidySet) <- value: Modify the sets information

  • nSets(object = TidySet, all = missing): Return the number of sets

  • nSets(object = TidySet, all = logical): Return the number of sets

See Also

nSets()

Other slots: elements(), relations()

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), subtract(), union()

Examples

TS <- tidySet(list(A = letters[1:5], B = letters[2:10]))
sets(TS)
sets(TS) <- data.frame(sets = c("B", "A"))
TS2 <- replace_sets(TS, data.frame(sets = c("A", "B", "C")))
sets(TS2)
nSets(TS)
nSets(TS2)

Method to show the TidySet object

Description

Prints the resulting table of a TidySet object. Does not shown elements or sets without any relationship (empty sets). To see them use sets() or elements().

Usage

## S4 method for signature 'TidySet'
show(object)

Arguments

object

A TidySet

Value

A table with the information of the relationships.


Size

Description

Calculate the size of the elements or sets, using the fuzzy values as probabilities. First it must have active either sets or elements.

Usage

size(object, ...)

Arguments

object

A TidySet object.

...

Character vector with the name of elements or sets you want to calculate the size of.

Value

The size of the elements or sets. If there is no active slot or it is the relations slot returns the TidySet object with a warning.

See Also

A related concept cardinality(). It is calculated using length_set().

Examples

rel <- data.frame(
    sets = c(rep("A", 5), "B", "C"),
    elements = c(letters[seq_len(6)], letters[6])
)
TS <- tidySet(rel)
TS <- activate(TS, "elements")
size(TS)
TS <- activate(TS, "sets")
size(TS)
# With fuzzy sets
relations <- data.frame(
    sets = c(rep("A", 5), "B", "C"),
    elements = c(letters[seq_len(6)], letters[6]),
    fuzzy = runif(7)
)
TS <- tidySet(relations)
TS <- activate(TS, "elements")
size(TS)
TS <- activate(TS, "sets")
size(TS)

Subtract

Description

Elements in a set not present in the other set. Equivalent to setdiff().

Usage

subtract(object, set_in, not_in, ...)

## S4 method for signature 'TidySet,characterORfactor,characterORfactor'
subtract(
  object,
  set_in,
  not_in,
  name = NULL,
  keep = TRUE,
  keep_relations = keep,
  keep_elements = keep,
  keep_sets = keep
)

Arguments

object

A TidySet object.

set_in

Name of the sets where the elements should be present.

not_in

Name of the sets where the elements should not be present.

...

Placeholder for other arguments that could be passed to the method. Currently not used.

name

Name of the new set. By default it adds a "C".

keep

Logical value to keep all the other sets.

keep_relations

A logical value if you wan to keep old relations.

keep_elements

A logical value if you wan to keep old elements.

keep_sets

A logical value if you wan to keep old sets.

Value

A TidySet object.

Methods (by class)

  • subtract( object = TidySet, set_in = characterORfactor, not_in = characterORfactor ): Elements present in sets but not in other sets

See Also

setdiff()

Other complements: complement_element(), complement_set(), complement()

Other methods that create new sets: complement_element(), complement_set(), intersection(), union()

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), union()

Examples

relations <- data.frame(
    sets = c("A", "A", "B", "B", "C", "C"),
    elements = letters[seq_len(6)],
    fuzzy = runif(6)
)
TS <- tidySet(relations)
subtract(TS, "A", "B")
subtract(TS, "A", "B", keep = FALSE)

Convert GSEABase classes to a TidySet

Description

Convert GSEABase classes to a TidySet

Usage

tidy(object)

## S3 method for class 'GeneSetCollection'
tidy(object)

## S3 method for class 'GeneSet'
tidy(object)

Arguments

object

A GeneSetCollection or a GeneSet derived object

Value

A TidySet object.

Methods (by class)

  • tidy(GeneSetCollection): Converts to a tidySet given a GeneSetCollection

  • tidy(GeneSet): Converts to a tidySet given a GeneSet

Examples

# Needs GSEABase pacakge from Bioconductor
if (requireNamespace("GSEABase", quietly = TRUE)) {
    library("GSEABase")
    gs <- GeneSet()
    gs
    tidy(gs)
    fl <- system.file("extdata", "Broad.xml", package="GSEABase")
    gs2 <- getBroadSets(fl) # actually, a list of two gene sets
    TS <- tidy(gs2)
    dim(TS)
    sets(TS)
}

Create a TidySet object

Description

These functions help to create a TidySet object from data.frame, list, matrix, and GO3AnnDbBimap. They can create both fuzzy and standard sets.

Usage

tidySet(relations)

## S3 method for class 'data.frame'
tidySet(relations)

## S3 method for class 'list'
tidySet(relations)

## S3 method for class 'matrix'
tidySet(relations)

## S3 method for class 'Go3AnnDbBimap'
tidySet(relations)

## S3 method for class 'TidySet'
tidySet(relations)

Arguments

relations

An object to be coerced to a TidySet.

Details

Elements or sets without any relation are not shown when printed.

Value

A TidySet object.

Methods (by class)

  • tidySet(data.frame): Given the relations in a data.frame

  • tidySet(list): Convert to a TidySet from a list.

  • tidySet(matrix): Convert an incidence matrix into a TidySet

  • tidySet(Go3AnnDbBimap): Convert Go3AnnDbBimap into a TidySet object.

  • tidySet(TidySet): Convert TidySet into a TidySet object.

See Also

TidySet

Examples

relations <- data.frame(
    sets = c(rep("a", 5), "b"),
    elements = letters[seq_len(6)]
)
tidySet(relations)
relations2 <- data.frame(
    sets = c(rep("A", 5), "B"),
    elements = letters[seq_len(6)],
    fuzzy = runif(6)
)
tidySet(relations2)
# A
x <- list("A" = letters[1:5], "B" = LETTERS[3:7])
tidySet(x)
# A fuzzy set taken encoded as a list
A <- runif(5)
names(A) <- letters[1:5]
B <- runif(5)
names(B) <- letters[3:7]
relations <- list(A, B)
tidySet(relations)
# Will error
# x <- list("A" = letters[1:5], "B" = LETTERS[3:7], "c" = runif(5))
# a <- tidySet(x) # Only characters or factors are allowed as elements.
M <- matrix(c(1, 0.5, 1, 0), ncol = 2,
            dimnames = list(c("A", "B"), c("a", "b")))
tidySet(M)

A tidy class to represent a set

Description

A set is a group of unique elements it can be either a fuzzy set, where the relationship is between 0 or 1 or nominal.

Details

When printed if an element or a set do not have any relationship is not shown. They can be created from lists, matrices or data.frames. Check tidySet() constructor for more information.

Slots

relations

A data.frame with elements and the sets were they belong.

elements

A data.frame of unique elements and related information.

sets

A data.frame of unique sets and related information.

See Also

tidySet

Other methods: activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract(), union()

Examples

x <- list("A" = letters[1:5], "B" = LETTERS[3:7])
a <- tidySet(x)
a
x <- list("A" = letters[1:5], "B" = character())
b <- tidySet(x)
b
name_sets(b)

Join sets

Description

Given a TidySet merges several sets into the new one using the logic defined on FUN.

Usage

union(object, ...)

## S3 method for class 'TidySet'
union(
  object,
  sets,
  name = NULL,
  FUN = "max",
  keep = FALSE,
  keep_relations = keep,
  keep_elements = keep,
  keep_sets = keep,
  ...
)

Arguments

object

A TidySet object.

...

Other named arguments passed to FUN.

sets

The name of the sets to be used.

name

The name of the new set. By defaults joins the sets with an ∩.

FUN

A function to be applied when performing the union. The standard union is the "max" function, but you can provide any other function that given a numeric vector returns a single number.

keep

A logical value if you want to keep.

keep_relations

A logical value if you wan to keep old relations.

keep_elements

A logical value if you wan to keep old elements.

keep_sets

A logical value if you wan to keep old sets.

Details

The default uses the max function following the standard fuzzy definition, but it can be changed. See examples below.

Value

A TidySet object.

See Also

union_probability()

Other methods that create new sets: complement_element(), complement_set(), intersection(), subtract()

Other methods: TidySet-class, activate(), add_column(), add_relation(), arrange.TidySet(), cartesian(), complement_element(), complement_set(), complement(), element_size(), elements(), filter.TidySet(), group_by.TidySet(), group(), incidence(), intersection(), is.fuzzy(), is_nested(), move_to(), mutate.TidySet(), nElements(), nRelations(), nSets(), name_elements<-(), name_sets<-(), name_sets(), power_set(), pull.TidySet(), relations(), remove_column(), remove_element(), remove_relation(), remove_set(), rename_elements(), rename_set(), select.TidySet(), set_size(), sets(), subtract()

Examples

# Classical set
rel <- data.frame(
    sets = c(rep("A", 5), "B", "B"),
    elements = c(letters[seq_len(6)], "a")
)
TS <- tidySet(rel)
union(TS, c("B", "A"))
# Fuzzy set
rel <- data.frame(
    sets = c(rep("A", 5), "B", "B"),
    elements = c(letters[seq_len(6)], "a"),
    fuzzy = runif(7)
)
TS2 <- tidySet(rel)
# Standard default logic
union(TS2, c("B", "A"), "C")
# Probability logic
union(TS2, c("B", "A"), "C", FUN = union_probability)

Union closed sets

Description

Tests if a given object is union-closed.

Usage

union_closed(object, ...)

## S3 method for class 'TidySet'
union_closed(object, sets = NULL, ...)

Arguments

object

A TidySet object.

...

Other named arguments passed to FUN.

sets

The name of the sets to be used.

Value

A logical value: TRUE if the combinations of sets produce already existing sets, FALSE otherwise.

Examples

l <- list(A = "1",
     B = c("1", "2"),
     C = c("2", "3", "4"),
     D = c("1", "2", "3", "4")
)
TS <- tidySet(l)
union_closed(TS)
union_closed(TS, sets = c("A", "B", "C"))
union_closed(TS, sets = c("A", "B", "C", "D"))

Calculates the probability of a single length

Description

Creates all the possibilities and then add them up. union_probability Assumes independence between the probabilities to calculate the final size.

Usage

union_probability(p)

length_probability(p, size)

Arguments

p

Numeric vector of probabilities.

size

Integer value of the size of the selected values.

Value

A numeric value of the probability of the given size.

See Also

multiply_probabilities() and length_set()

Examples

length_probability(c(0.5, 0.75), 2)
length_probability(c(0.5, 0.75, 0.66), 1)
length_probability(c(0.5, 0.1, 0.3, 0.5, 0.25, 0.23), 2)
union_probability(c(0.5, 0.1, 0.3))