Package 'DoOR.functions'

Title: Integrating Heterogeneous Odorant Response Data into a Common Response Model: A DoOR to the Complete Olfactome
Description: This is a function package providing functions to perform data manipulations and visualizations for DoOR.data. See the URLs for the original and the DoOR 2.0 publication.
Authors: Daniel Münch [aut, cre], C. Giovanni Galizia [aut], Shouwen Ma [aut], Martin Strauch [aut], Anja Nissler [aut], Wolf Huetteroth [ctb]
Maintainer: Daniel Münch <[email protected]>
License: GPL-3
Version: 2.0.2
Built: 2024-12-27 03:13:13 UTC
Source: https://github.com/ropensci/DoOR.functions

Help Index


back_project

Description

project the model response values back into your scale of interest (spike, deltaF/F...)

Usage

back_project(template.data, responding.unit,
  response_matrix = door_default_values("door_response_matrix"))

Arguments

template.data

data frame, the data that provides the scale to transform to, containing InChIKeys in a column called "odorants" and responses in a column called "responses"

responding.unit

character, the name of the receptor/OSN/glomerulus which responses should be transformed

response_matrix

DoOR response matrix, the source data is picked from here

Details

The process of back projection is the following:

  • 1. rescale both data sets to [0,1],

  • 2. find the best fitting model between "bp.data" and "cons.data" (lowest MD value),

  • 3. project the consensus data onto the fitted curv, these are now our normalized, back projected responses

  • 4. rescale all responses to the scale of the original data via a linear fit.

Value

Output of back_project is a list containing a data frame with the back_projected data, the original data, the data used as a template and the data that resulted from fitting source and template (before rescaling to the template scale). additionaly the parameters of the linear fit between the source and template response scale is returned.

Author(s)

Daniel Münch <[email protected]>

Shouwen Ma <[email protected]>

Examples

# load some data sets
data(Or22a)
data(door_response_matrix)

# create example data we are going to back project
template.data <- data.frame(odorants = Or22a$InChIKey,
                            responses = Or22a$Hallem.2004.EN)

# run back_project and plot the results
bp <- back_project(template.data, "Or22a")

plot(bp$back_projected$original.data,
     bp$back_projected$back_projected.data,
     xlab = "DoOR consensus response",
     ylab = "back_projected data [spikes, Hallem.2004.EN]"
)

' select the best model function

Description

calculate_model is used to return the best model function that represent the relationship between responses from study x and y.

Usage

calculate_model(x, y, select.MD = door_default_values("select.MD"))

Arguments

x, y

data vectors from study x and y (can contain NA)

select.MD

logical, if TRUE, only the best model function (in terms of MD) will be returned.

Details

calculate_model chooses the best model function from following: linear, exponential function, sigmoid, asymptotic model with x intercept, asympototic model with y intercept and their inverse versions. (If your are interested in these functions please check the sources at https://github.com/Dahaniel/DoOR.functions)

Author(s)

Shouwen Ma <[email protected]>

Daniel Münch <[email protected]>

Examples

# load a data set
library(DoOR.data)
data(Or35a)

# pick 2 data sets for Or35a and rescale the data [0,1]
x <- door_norm(Or35a[,6])
y <- door_norm(Or35a[,9])
# run calculate_model
calM_xy <- calculate_model(x,y, select.MD = door_default_values("select.MD"))

count_studies

Description

returns a matrix indiating how many studies have recorded individual receptor-odorant combinations

Usage

count_studies(ors = door_default_values("ORs"),
  odor_data = door_default_values("odor"),
  char.columns = door_default_values("num.charColumns"),
  ident = door_default_values("ident"))

Arguments

ors

data.frame containing all receptors exidting in DoOR.

odor_data

data.frame containing information about the odorants in DoOR.

char.columns

number of character columns in each receptor data.frame.

ident

odorant identifier to be used as rownames.

Value

matrix

Examples

# load some data
library(DoOR.data)
load_door_data(nointeraction = TRUE)

#run count studies and plot the result
count <- count_studies()
image(count)
head(count)

Compose a Response Matrix of All Odor Receptors

Description

computes the complete response model for all receptors in the database (calls model_response for all receptors). Overwrites response_matrix, door_response_matrix_non_normalized and door_excluded_data.

Usage

create_door_database(tag = door_default_values("tag"),
  select.MDValue = door_default_values("select.MDValue"),
  overlapValues = door_default_values("overlapValues"), ...)

Arguments

tag

character string, format for rownames, possibilities: "InChIKey", CAS", "CID", "Name"

select.MDValue

a numeric, threshold on the MD, this is used to reject studies that do not align sufficiently well to the response model

overlapValues

numeric, a criterion using to refuse a data set that has not enough overlap value.

...

pass more parameters to model_response

Author(s)

Shouwen Ma <[email protected]>

Daniel Münch <[email protected]>

See Also

model_response

Examples

## Not run: 
# load DoOR data
library(DoOR.data)
load_door_data()

# create a new consensus matrix
create_door_database()

## End(Not run)

default values for DoOR functions

Description

door_default_values is used to return default values for DoOR functions.

Usage

door_default_values(DoOR_default)

Arguments

DoOR_default

a character string, indicating which argument is to be returned for DoOR functions.

Details

There are six categories for default value. real number, integer, logical, NULL, character string and character vector.

Author(s)

Shouwen Ma <[email protected]>

Examples

# extract DoOR default values
door_default_values(DoOR_default = "select.MD")

rescale the data values from 0 to 1

Description

door_norm is used to normalize the data in values from 0 to 1.

Usage

door_norm(x)

Arguments

x

a numeric vector

Author(s)

Shouwen Ma <[email protected]>

Daniel Münch <[email protected]>

Examples

# create example data
x <- rnorm(10)

# run door_norm on it
door_norm(x)

DoOR Functions

Description

Functions package providing manipulation and application of the DoOR.

Details

Package: DoOR.functions
Type: Package
Version: 2.0.0
Date: 2016-01-25
License: GPL-3
LazyLoad: yes

Type help(package = DoOR.functions) to see a complete list of datasets and functions. Below is what you need for a quick start.

First, load the DoOR packages, data and function package:

library(DoOR.functions):
library(DoOR.data):

then, load all datasets including the precomputed response matrix:

load_door_data: Load all data into current active environment (function comes with DoOR.data) .

or, load all odorant reseponse data into a list:

load2list: Load odorant response data only and compose them as a list.

Try some visualizations (e.g. producing the plots from the paper):

dplot_al_map: response to a chemical mapped onto an image of the antennal lobe.
dplot_compare_profiles: compare the results of two studies.
dplot_response_matrix: Dot Plot of Odorant Responses Across Receptors.
dplot_response_profile: bar plot: one receptor, all chemicals.
dplot_tuningCurve: pyramid diagram depicting a receptor's tuning breadth.

Try some queries:

get_responses: given a chemical, get original responses from all studies in the database.
get_normalized_responses: given a chemical, get normalised responses from all studies in the database.

In case you wish to create your own response model (e.g. because you want to include your own datasets):

create_door_database: compute the complete response model for all receptors in the database (calls model_response for all receptors).
model_response: run the DoOR algorithm, that merges all measurements for one receptor.

Estimate odorant responses:

estimate_missing_value: estimate NA entries in a consensus response data.

Project the model response values back to tested values:

back_project: project the model response values back to tested values.

Introduce new data into DoOR and update the supported data sets:

import_new_data: import new data into DoOR, and update the weight, response range and receptor names.
update_door_database: update response matrix by calculating new consensus response data for a given receptor.

See the Vignettes and the help pages for more documentation.

Author(s)

C. Giovanni Galizia
Daniel Muench
Martin Strauch
Anja Nissler
Shouwen Ma

Maintainer: Daniel Münch <[email protected]>

References

http://neuro.uni-konstanz.de/DoOR

See Also

DoOR.data


dplot_across_osns

Description

plot the activation patterns of one or several odorants across OSNs

Usage

dplot_across_osns(odorants,
  response_matrix = door_default_values("door_response_matrix"),
  odor_data = door_default_values("odor"),
  door_mappings = door_default_values("door_mappings"),
  zero = door_default_values("zero"), tag = "Name", sub, plot.type = 1,
  base_size = 12)

Arguments

odorants

character vector, one or several InChIKeys

response_matrix

DOOR response matrix, contains the data to plot

odor_data

data frame, contains the odorant information.

door_mappings

data frame, containing the mappings of response profiles to morphological structures.

zero

character, InChIKey of the odorant that should be set to 0 (e.g. SFR)

tag

character, the chemical identifier to use in the plot, one of colnames(odor)

sub

character vector, specify one or several classes of sensilla the plot should be restricted to. One or several of: "ab" "ac", "at", "ai", "pb", "sacI", "sacII"

plot.type

interger, 1 or 2, defining the type of plot (1: facet_grid of odorants * sensillae, 2: facet_wrap across OSNs)

base_size

numeric, the base font size for the ggplot2 plot

Details

DoOR response profiles will be selected and ordered according to the OSNs they are related to. Several DoOR response profiles might exist for a given OSN (e.g. one for the OSN itself and one for the OSNs misexpressed receptor protein) but only one will be shown. Which DoOR profile is mapped to which OSN is controlled via the "code.OSN" column in DoORmapings.

Value

a ggplot2 object

Author(s)

Daniel Münch <[email protected]>

Examples

# load DoOR data & functions
library(DoOR.data)
library(DoOR.functions)

# pick example odorants by name ans transform their ID to InChIKey 
odorants <- trans_id(c("1-butanol", "isopentyl acetate", "carbon dioxide", "water"), 
from = "Name", to = "InChIKey")
 
# plot                                      
dplot_across_osns(odorants)
# plot only across ac and at sensillae
dplot_across_osns(odorants, sub = c("ac", "at"))
# plot across sensory neurons
dplot_across_osns(odorants, plot.type = 2)

dplot_across_ru

Description

barplot of DoOR responses of a set of odorant across all responding units in DoOR

Usage

dplot_across_ru(odorant,
  response_matrix = door_default_values("door_response_matrix"),
  odor_data = door_default_values("odor"),
  zero = door_default_values("zero"), tag = "Name", limits,
  base_size = 12)

Arguments

odorant

character vecto, one or several InChIKeys

response_matrix

DoOR response matrix, a DoOR response matrix as data source

odor_data

data frame, contains the odorant information.

zero

character, an InChIKey of the odorant that should be set to 0

tag

character, the chemical identifier to plot as odorant name (one of colnames(odor))

limits

numeric of length 2, if provided the ylim will range accordingly

base_size

numeric, the base font size for the ggplot2 plot

Value

a ggplot object

Author(s)

Daniel Münch <[email protected]>

Examples

# load data
library(DoOR.data)
library(DoOR.functions)
data(odor)

# plot activation pattern of one or several odorants
dplot_across_ru(trans_id("123-92-2"), tag = "CAS")
dplot_across_ru(odor$InChIKey[4:10])

dplot_al_map

Description

Plot an antennal lobe map with color coded odorant responses.

Usage

dplot_al_map(InChIKey,
  response_matrix = door_default_values("door_response_matrix"),
  odor_data = door_default_values("odor"),
  door_mappings = door_default_values("door_mappings"),
  zero = door_default_values("zero"),
  tag = door_default_values("tag.ALmap"), main = "Name",
  scalebar = door_default_values("scalebar"),
  door_AL_map = door_default_values("door_AL_map"),
  colors = door_default_values("colors"), legend = TRUE, limits,
  base_size = 12)

Arguments

InChIKey

InChIKey specifying the odorant to plot

response_matrix

the input data (e.g. door_response_matrix or door_response_matrix_non_normalized)

odor_data

data frame, contains the odorant information.

door_mappings

the data frame containing the mapping information

zero

the odorant to set to zero (defaults to "SFR")

tag

the labels to plot on top of the glomeruli (one of the following door_mappings columns: "receptor", "sensillum", "ORN", "glomerulus" or "co.receptor")

main

the title, one column of odor, defaults to "Name"

scalebar

whether or not to add a scalebar

door_AL_map

a list containing the AL model

colors

a vector containing 6 color values (2 for values below 0, 1 0 value and 3 steps between 0 and 1)

legend

logical, plot a legend?

limits

the limits for the color scale, if empty the range of the response matrix is taken (after setting “zero“ to 0)

base_size

numeric, the base font size for the ggplot plot

Details

Normalized, color coded odor responses across receptors are mapped onto a map of the Drosophila antennal lobe. The antennal lobe map was a kind gift from Veit Grabe.

Value

a ggplot2 object

Author(s)

Daniel Münch [email protected]

Daniel Münch <[email protected]>

References

Grabe, V., Strutz, A., Baschwitz, A., Hansson, B.S., Sachse, S., 2014. A digital in vivo 3D atlas of the antennal lobe of Drosophila melanogaster. J. Comp. Neurol. n/a–n/a. doi:10.1002/cne.23697

See Also

get_normalized_responses, ggplot2, grid

Examples

# load data
library(DoOR.data)
library(DoOR.functions)

# map responses on antennal lobe scheme
dplot_al_map("MLFHJEHSLIIPHL-UHFFFAOYSA-N", scalebar = FALSE)

# change colors
dplot_al_map("MLFHJEHSLIIPHL-UHFFFAOYSA-N", tag = "Ors",
   color = c("magenta", "pink", "white", "yellow", "orange", "red"))

# pass some ggplot2 theming parameters
dplot_al_map(trans_id("123-92-2"), scalebar = FALSE) +
ggplot2::theme(legend.position  = "bottom",
     panel.background = ggplot2::element_rect(fill = "grey90", color = NA)) +
ggplot2::ggtitle("responses elicited by isopentyl acetate")

# export as pdf
## Not run: 
p <- dplot_al_map(trans_id("123-92-2"))
ggplot2::ggsave("AL.response.pdf", p, width = 6, height = 2, scale = 2)

## End(Not run)

Compare two response profiles

Description

Orderdered bar plots for two studies, allowing for an easy comparison of the two studies / response profiles'.

Usage

dplot_compare_profiles(x, y, by.x, by.y, tag = "Name", base_size = 12)

Arguments

x

the input data frame the first response profile will be taken from

y

the input data frame the second response profile will be taken from (x will be taken if y is missing)

by.x

character string, specifying a column in x

by.y

character string, specifying a column in y

tag

character, the chemical identifier that will be used as odorant label.

base_size

numeric, the base font size for the ggplot2 plot

Author(s)

Daniel Münch <[email protected]>

Examples

# load data
library(DoOR.data)
library(DoOR.functions)
data(Or22a)
data(door_response_range)
data(door_response_matrix)

# compare the Hallem and the Pelz data set for Or22a
dplot_compare_profiles(x = Or22a, y = Or22a,
                         by.x = "Hallem.2006.EN",
                         by.y = "Pelz.2006.AntEC50")

# comparedata from two different sensory neurons and add odorant labels 
dplot_compare_profiles(x = cbind(door_response_matrix, InChIKey =
rownames(door_response_matrix)), y = cbind(door_response_matrix, InChIKey =
rownames(door_response_matrix)), by.x = "Or22a", by.y = "Or10a")

dplot_response_matrix

Description

plot DoOR responses as a point matrix

Usage

dplot_response_matrix(data, odor_data = door_default_values("odor"),
  tag = door_default_values("tag"), colors = door_default_values("colors"),
  flip = FALSE, fix = TRUE, bw = FALSE, point = FALSE, limits,
  base_size = 12)

Arguments

data

a subset of e.g. door_response_matrix

odor_data

data frame, contains the odorant information.

tag

the chemical identfier to plot (one of colnames(odor))

colors

the colors to use if negative values are supplied (range of 5 colors, 2 for negative values, 1 for 0 and 3 for positive values)

flip

logical, if TRUE the x and y axes will be flipped

fix

logical, whether to fix the ratio of the tiles when plotting as a heatmap

bw

logical, whether to plot b&w or colored

point

logical, if TRUE a point matrix instead of a heatmap will be returned (the default if you supply only positive values)

limits

the limits of the scale, will be calculated if not set

base_size

numeric, the base font size for the ggplot2 plot

Value

a dotplot if limits[1] >= 0 or a heatmap if limits[1] < 0

Author(s)

Daniel Münch <[email protected]>

Examples

# load data
library(DoOR.data)
data(door_response_matrix)

# reset the spontaneous firing rate to 0
tmp <- reset_sfr(door_response_matrix, "SFR")

# plot heatmap / coloured tiles
dplot_response_matrix(tmp[10:50,], tag = "Name", 
 limits = range(tmp, na.rm = TRUE))

# plot dotplot
dplot_response_matrix(door_response_matrix[10:50,], tag = "Name",
                        limits = range(door_response_matrix, na.rm = TRUE))

dplot_response_profile

Description

create a barplot of a DoOR response profile

Usage

dplot_response_profile(receptor,
  response_matrix = door_default_values("door_response_matrix"),
  odor_data = door_default_values("odor"), tag = door_default_values("tag"),
  colored = TRUE, colors = door_default_values("colors"), limits,
  zero = door_default_values("zero"),
  scalebar = door_default_values("scalebar"), base_size = 12)

Arguments

receptor

character, receptor name, any of colnames(door_response_matrix)

response_matrix

a DoOR door_response_matrix

odor_data

data frame, contains the odorant information.

tag

character, chemical identifier for annotation

colored

logical, color code the bars according to the response value?

colors

character vector, a vector of 5 colors (2 for values < 0, 1 value for 0 and 3 values > 0)

limits

numeric of length 2, the limits for the colorscale and the x axis, global range of data will be used if empty

zero

character, the odorant response that is set to 0, defaults to "SFR"

scalebar

logical, add or suppress scalebars

base_size

numeric, the base font size for the ggplot2 plot

Value

ggplot2 plot

Author(s)

Daniel Münch <[email protected]>

Examples

# load data
library(DoOR.data)
data(door_response_matrix)

# plot with default parameters
dplot_response_profile("Or22a", door_response_matrix)

# plot wit odorant names
dplot_response_profile("Or22a", door_response_matrix, tag = "Name")

dplot_tuningCurve

Description

plot a receptor or odorant tuning curve

Usage

dplot_tuningCurve(receptor, odorant, response.vector,
  response_matrix = door_default_values("door_response_matrix"),
  odor_data = door_default_values("odor"),
  zero = door_default_values("zero"),
  fill.receptor = door_default_values("color.receptor"),
  fill.odorant = door_default_values("color.odorant"), odor.main = "Name",
  limits, base_size = 12)

Arguments

receptor

character, a receptor name (one of ORS$OR)

odorant

character, an odorant name (InChIKey)

response.vector

numerical vector, a vector with responses, if empty this is taken from door_response_matrix

response_matrix

DoOR response matrix, response vector will be taken from here, not needed if response.vector is given

odor_data

data frame, contains the odorant information.

zero

InChIKey, will be set to zero, default is SFR, ignored when data is provided via response.vector, set to "" if you don't want to subtract anything

fill.receptor

color code, bar color for receptor tuning curve

fill.odorant

color code, bar color for odorant tuning curve

odor.main

the odor identifier to plot, one of colnamed(odor)

limits

the numerical vector of length 2, y limits for the tuning curve

base_size

numeric, the base font size for the ggplot2 plot

Value

a ggplot object

Author(s)

Daniel Münch <[email protected]>

Examples

# load data
library(DoOR.data)
data(door_response_matrix)
data(odor)

# plot a tuning curve for an odorant
dplot_tuningCurve(odorant = odor$InChIKey[2])
# or for a receptor
dplot_tuningCurve(receptor = "Or22a")

# adjust the plotting range
range <- range(reset_sfr(door_response_matrix, "SFR"), na.rm = TRUE)
dplot_tuningCurve(receptor = "Or10a", limits = range, 
                  fill.receptor = "magenta")

# plot with manual input data as receptor tuning curve
dplot_tuningCurve(receptor = "receptor X", response.vector = c(1:100))
# or as odor tuning curve
dplot_tuningCurve(odorant = "odor X", response.vector = rnorm(200))

Estimate the missing entries in a response data

Description

Estimate the missing entries in a response data

Usage

estimate_missing_value(data, nodor, method = "PC")

Arguments

data

a data frame or matrix, contaning the consensus response values

nodor

a numeric value, specifying the number of the selected odors

method

character string, specifying the method ("PC" (Pearson's coefficient) and "Knn" (k nearest neighbors)) for estimation, the default is "PC".

Details

A wrapper programe for using Pearson Correlation or k-nearest neighbors to estimate the missing entries in a response matrix.

Author(s)

Shouwen Ma <[email protected]>

References

Kim, H., Golub, G. H. & Park, H., Missing value estimation for DNA microarray gene expression data: local least squares imputation., 2005, Bioinformatics, 21, 187-198

Examples

## Not run: 
# load data
library(DoOR.data)
data(door_response_matrix)

# pick an example subset
subset <- door_response_matrix[1:100, 11:30]

# estimate missing values
est.data <- estimate_missing_value(data = subset, nodor = 6)

## End(Not run)

export data

Description

export odor response data and supported data

Usage

export_door_data(file.format, directory,
  odorantReceptors = door_default_values("ORs"),
  response_matrix = door_default_values("door_response_matrix"),
  responseRange = door_default_values("door_response_range"),
  unglobalNorm_RM = door_default_values("door_response_matrix_non_normalized"),
  weightGlobNorm = door_default_values("door_global_normalization_weights"),
  all.data = TRUE)

Arguments

file.format

character string, the format of given file, either ".txt" or ".csv"

directory

character string, naming a directory for writing. If missing, the exported data are saved in current working directory.

odorantReceptors

data frame, receptor names and expressions

response_matrix

data matrix, an global unnormalized responses matrix

responseRange

data frame, response ranges for each study

unglobalNorm_RM

data matrix, an unnormalized responses matrix

weightGlobNorm

data frame, weight matrix for global normalizazion

all.data

logical, if TRUE, export odorant response data and supported data "door_response_matrix", "door_response_range", "door_response_matrix_non_normalized", "door_response_matrix", "door_global_normalization_weights" and "ORs".

Details

Please load ORs from data package DoOR.data by typing (data(ORs)) before use.

Author(s)

Shouwen Ma <[email protected]>

Examples

## Not run: 
# load data
library(DoOR.data)
library(DoOR.functions)
load_door_data()

# export odorant response data only
export_door_data(".txt", all.data = FALSE) 	

## End(Not run)

getDataset

Description

aggregates original data from a given study

Usage

get_dataset(study, na.rm = FALSE)

Arguments

study

character, the name of the study you want to aggregate the dta from

na.rm

logical, whether or not to exclude odorants that were not measured in the study

Value

returns a data frame containing all the odorant responses measured in study

Author(s)

Daniel Münch <[email protected]>

Examples

# load data
library(DoOR.data)
load_door_data(nointeraction = TRUE)

# get all recordings from the Hallem.2004.EN data set
get_dataset("Hallem.2004.EN", na.rm = TRUE)

Find normalised receptor responses

Description

given a chemical, get normalised receptor responses from all studies in the database.

Usage

get_normalized_responses(odors, zero = door_default_values("zero"),
  response_matrix = door_default_values("door_response_matrix"), round = 3,
  na.rm = FALSE)

Arguments

odors

character vector, one or more odors provided as InChIKey.

zero

InChIKey of background that should be set to zero. The default is "SFR", i.e. the spontaneous firing rate.

response_matrix

a data frame, as e.g. "door_response_matrix" that is loaded by model_response. It is also possible to create this frame manually using model_response.

round

numeric, round to this amount of digits, set to NA if you do not want to round

na.rm

logical, remove NAs?

Author(s)

Daniel Münch [email protected]

See Also

model_response,create_door_database

Examples

# load data
library(DoOR.data)
data(door_response_matrix)

# define a list of odorants
odors <- c("MLFHJEHSLIIPHL-UHFFFAOYSA-N",
           "OBNCKNCVKJNDBV-UHFFFAOYSA-N",
           "IKHGUXGNUITLKF-UHFFFAOYSA-N")

# get the normalized responses for these odorants
result <- get_normalized_responses(odors, 
                                   response_matrix = door_response_matrix)

Find receptor responses

Description

given a chemical, get original receptor responses from all studies in the database.

Usage

get_responses(odorant,
  responseRange = door_default_values("door_response_range"),
  Or.list = load2list())

Arguments

odorant

a single odor provided as InChIKey

responseRange

data frame, response ranges of studies

Or.list

a list contains reponse data of all available receptors. It can be loaded using load2list.

Details

output is a data frame containing response values of given odor across receptors from all available studies.

Author(s)

Daniel Münch [email protected]

Examples

# load data
library(DoOR.data)
load_door_data(nointeraction = TRUE)

# get raw responses for odorant MLFHJEHSLIIPHL-UHFFFAOYSA-N
responses <- get_responses(odorant = 'MLFHJEHSLIIPHL-UHFFFAOYSA-N')

identify_sensillum

Description

correlates the result from a SSR recording of several odorants against all DoOR response profiles

Usage

identify_sensillum(recording,
  response_matrix = door_default_values("door_response_matrix"),
  odor_data = door_default_values("odor"),
  door_mappings = door_default_values("door_mappings"), tag = "Name",
  min.cor = 0.9, nshow = 10, method = "cor", sub, base_size = 12,
  plot = TRUE, use = "everything")

Arguments

recording

data frame, a data frame with the following columns "odorants" containing InChIKeys of the tested odorrant, and one column called "unit1" etc. for each unit, containing responses (or estimates) scaled between 0 and 1 (see examples)

response_matrix

DoOR response matrix, the data to compair against

odor_data

data frame, contains the odorant information.

door_mappings

the data frame containing the mapping information

tag

character, the chemical identifier to use in plots, one of colnames(odor)

min.cor

numeric, a minimum correlation value, the function will check wether there is a higher correlation for all units within a single sensillum

nshow

numeric, the number of plots to nshow, plot e.g. only the top 10 matches

method

character, the method for similarity calculations: correlation ("cor") or Euclidean distances ("dist")

sub

character, if you know the class of sensillum you were recording from you can restrict the search to this subset here ("ab", "ac", "at", "pb", "sac")

base_size

numeric, the base font size of the ggplot plots

plot

logical, if TRUE returns the plot, else returns the data frame with the correlations/distances

use

character, the "use" option from the cor function, "all" returns NA when pairs are incomplete, "na.or.complete" only uses complete observations to calculate correlations; see cor for details

Value

eithe& Carolin G.(†27)r a plot (gtable) with responses sorted by highest correlations or lowest distances, or a data frame containing all calculated correlations or Euclidean distances

Author(s)

Daniel Münch <[email protected]>

Examples

# load data
library(DoOR.data)

# create an example recording
recording <- data.frame(
   odorants = c(trans_id(c("BEDN", "ETAS"), "Code"),
   trans_id("carbon dioxide", "Name")),
   unit1 = c(.9,.1,.1),
   unit2 = c(0, .1, 1)
)

# run the identification
identify_sensillum(recording)
identify_sensillum(recording, method = "dist", nshow = 5)

Import new data into DoOR

Description

Import or update new data and update door_global_normalization_weights, door_response_range, odor, ORs and receptor data frames.

Usage

import_new_data(file.name,
  dataFormat = door_default_values("door_data_format"),
  odor_data = door_default_values("odor"),
  weightGlobNorm = door_default_values("door_global_normalization_weights"),
  responseRange = door_default_values("door_response_range"),
  receptors = door_default_values("ORs"),
  ident = door_default_values("ident"), round = 3)

Arguments

file.name

character string, the name of given file that contains response values of one or more odorant receptors, either a .csv or .txt file.

dataFormat

data frame, a data frame does not contain any response value but odorant information.

odor_data

data frame, contains the odorant information.

weightGlobNorm

data matrix, indicates whether given receptor has been measured by given study.

responseRange

data frame, contains the information about response range of each study and how many odors have been measured in each study.

receptors

data frame, contains the receptor and OSN names and their expression.

ident

the identifier used for matching, usually the InChIKey is used.

round

the number of digits the imported values are rounded to.

Details

import_new_data is used to import new data into database. If the data contains a new receptor or ORN, then build a new data frame for this receptor or ORN. If the data contains a receptor that is already present in database, then merge the imported data into old data frame. The information (e.g. response range, how many receptors and odors were measured from given study) will be integrated into data door_response_range, odor, ORs and door_global_normalization_weights. If an existing study is imported, remove_study will be run first in order to perform an update.

Author(s)

Shouwen Ma <[email protected]>

Daniel Münch <[email protected]>

Examples

## Not run: 
import new data named "odorantResponses_Orx.txt" into database and update the
support data.
library(DoOR.data)
import_new_data(file.name = "odorantResponses_Orx.csv")

## End(Not run)

load2list

Description

returns all original DoOR response data as a list

Usage

load2list()

Value

a list

Author(s)

Daniel Münch <[email protected]>

Examples

# load DoOR.data
library(DoOR.data)
load_door_data(nointeraction = TRUE)

# write the data into a list
lst <- load2list()

map_receptor

Description

Identifying the source of unknown response data by correlating it agains all DoOR responding units.

Usage

map_receptor(data,
  response_matrix = door_default_values("door_response_matrix"), sub,
  threshold.p, threshold.cor, nshow)

Arguments

data

data frame, containing two columns, one called "odorants" and one "responses" providing InChIKeys and odorant responses respectively.

response_matrix

output is a numeric vector that contains the Pearson Correlation Coefficient between given data and selected consensus data in

sub

character, a subset of responding units returned response matrix

threshold.p

numeric, a p-value threshold, only correlations below will be returned

threshold.cor

numeric, a correlation-coefficient threshold, only correlations above will be returned

nshow

numeric, if defined, only this number of results will be

Author(s)

Shouwen Ma <[email protected]>

Daniel Münch <[email protected]>

Examples

# load data
load_door_data(nointeraction = TRUE)

# pick example data
data <- data.frame(odorants  = Or22a$InChIKey,
                   responses = Or22a$Hallem.2004.EN)
data <- na.omit(data)

# find the corresponding receptor / responding unit
map_receptor(data = data)

Generates a model response

Description

Runs the DoOR algorithm, that merges all measurements for one receptor into a common response model.

Usage

model_response(da, select.MDValue = door_default_values("select.MDValue"),
  overlapValues = door_default_values("overlapValues"),
  responseRange = door_default_values("door_response_range"),
  weightGlobNorm = door_default_values("door_global_normalization_weights"),
  glob.normalization = door_default_values("glob.normalization"),
  plot = door_default_values("plot"))

Arguments

da

data frame, a selected receptor containing measured responses from studies.

select.MDValue

numeric, threshold on the MD for rejecting a fit.

overlapValues

numeric, a criterion using to refuse a data set that has not enough overlap value.

responseRange

data frame, contains response ranges for all studies.

weightGlobNorm

data frame, a binary data matrix, 1 indicates given odor has been measured in given study, NA indicates NOT.

glob.normalization

logical, default is TRUE, performs a global normalization for the model response. Otherwise (FALSE) response values will be given in value from 0 to 1.

plot

logical, If FALSE, plotting is suppressed. Default is FALSE.

Details

Merging a data is processed by following:

  1. Normalize all response data in value [0,1].

  2. Compute the correlation between studies and selected the best pair using select_model.

  3. Merge the first pair using function project_points.

  4. Add other datasets if the correlation between the growing model response and the new dataset is below the correlation threshold (select.MDValue). Datasets excluded based on this criterion will be appended in a separate list.

Author(s)

Shouwen Ma <[email protected]>

Examples

# load data
library(DoOR.data)
data(Or35a)
data(door_global_normalization_weights)
data(door_response_range)

# merge all existing data sets for Or35a into a consensus model response
model_response_Or35a <- model_response(Or35a, plot = TRUE)

model_response_seq

Description

generates a model response and merge data in given sequence

Usage

model_response_seq(data, SEQ,
  overlapValues = door_default_values("overlapValues"),
  select.MDValue = door_default_values("select.MDValue"), strict = TRUE,
  plot = FALSE)

Arguments

data

data frame, odorant response data, e.g. Or22a.

SEQ

character vector, containing the names of studies indicating given sequence for merging data.

overlapValues

minimum overlap between studies to perfom a merge

select.MDValue

the minimum mean distance between studies to perfom a merge

strict

logical, if TRUE merging a permutation will be stopped once a single merge has a mean distance above select.MDValue

plot

logical

Details

# model_response_seq.R: #################

# merges studies in a given sequence (determined by the user or by exhaustive enumeration and choosing the optimal sequence)

# input parameters: ####################

# data : data frame, odorant response data for a given receptor, e.g. Or22a # SEQ : character vector, contains the names of studies that measured this receptor in a specific order (the merging sequence)

# output is a numeric vector: response values

Author(s)

Shouwen Ma <[email protected]>

Examples

# load data
library(DoOR.data)
data(Or35a)
data(door_response_range)

# specify a sequence of merging
SEQ <- c("Hallem.2006.EN","Kreher.2008.EN","Hallem.2006.EN")

# perform the merging
selected_merg <- model_response_seq(Or35a, SEQ = SEQ, plot = TRUE)

private_odorant

Description

return an odorant that activates the receptor of interest exclusively

Usage

private_odorant(receptor, sensillum = FALSE,
  response_matrix = door_default_values("door_response_matrix"),
  door_mappings = door_default_values("door_mappings"),
  zero = door_default_values("zero"), nshow = 5, tag)

Arguments

receptor

character, name of a DoOR responding unit (one of ORs$Or)

sensillum

logical, restrict the search to the sensillum the receptor is expressed in?

response_matrix

DoOR response matrix, the input data to perform the search on

door_mappings

the data frame containing the mapping information

zero

character, an odorant that should be set to 0

nshow

numeric, the number of private odorants to return

tag

character, the chemical identifier to give the odorant names in (on of colnames(odor))

Value

a data.frame containing odorants and the response in the receptor of interest as well as the maximum response of the remaining receptors and their difference

Examples

# load data
library(DoOR.data)

# find a private odorant for Gr21a.Gr63a (the carbon dioxide receptor)
# private_odorant("Gr21a.Gr63a", tag = "Name")

# now find an odorant that within the ab3 sensillum specifically activates
# Or22a
private_odorant("Or22a", tag = "Name", sensillum = TRUE)

project_points

Description

projects data points onto the curve defined by the model function

Usage

project_points(x, y, xylim, best.model, plot = door_default_values("plot"),
  points_cex = door_default_values("points.cex"),
  title = door_default_values("title"), ...)

Arguments

x, y

numeric vectors of data values, coordinate vectors of points to plot, the coordinates can contain NA values.

xylim

numeric vectors, x, y limits of the plot.

best.model

a list, containing the parameters, function, inverse function, Leibniz's notation for distance calculation and MD value. if missing, the best model will be generated automatically.

plot

logical, If FALSE, plotting is suppressed. Default is FALSE.

points_cex

a numerical value, giving the magnification level of symbols relative to the default size.

title

logical, If TRUE, title is shown. Default is FALSE.

...

further graphical parameters

Details

For internal use in the merging process (see also model_response). The model function is choosen by calculate_model. project_points then projects the data points from the datasets to be merged onto the curve defined by the model function. It computes the closest distance from a data point to a point on the curve by numerical optimisation.

A list with two data frames "double.observations" and "single.observations" is returned, which give the coordinates of double observations (defined as (x,y)) and coordinates of single observation (defined as (x,NA) or (NA,y)). Both data frames contain seven columns: "ID" indicating the original position of data x and y, "x", "y" indicating the coordinate of observation, "X", "Y" indicating the coordinate of projected point on the function, "distance" indicating the distances between (xmin, f(xmin)) and all points on the functional line, "NDR" indicating the normalized distances across all the distance values.

Author(s)

Shouwen Ma <[email protected]>

See Also

calculate_model, optimize, integrate

Examples

# load data
library(DoOR.data)
data(Or23a)

# normalize two example data sets
x <- door_norm(Or23a[,'Hallem.2004.EN'])
y <- door_norm(Or23a[,'Hallem.2006.EN'])

# find the best fitting function and project the remaining points (measured
# only in one of the data sets) onto the fit.
project_points(x = x, y = y, plot = TRUE)

Remove a study from DoOR

Description

Use this function to remove a study from the DoOR database. import_new_data.R uses this function when it detects an existing study during the import process (e.g. because you imported updated data).

Usage

remove_study(study, receptors = door_default_values("ORs"),
  responseRange = door_default_values("door_response_range"),
  weightGlobNorm = door_default_values("door_global_normalization_weights"))

Arguments

study

a string containing the name of the study you want to remove (e.g. 'Bruyne.2001.WT')

receptors

a vector of all the receptors to be checked. Defaults to all receptors exidting in DoOR.

responseRange

the dataframe containing the info about the response ranges of all studies (door_response_range)

weightGlobNorm

the dataframe containing the info about the relative weights between receptors (door_global_normalization_weights)

Author(s)

Daniel Münch <[email protected]>

See Also

import_new_data

Examples

# load data
library(DoOR.data)
load_door_data(nointeraction = TRUE)

# remove Bruyne.2001.WT from DoOR
remove_study('Bruyne.2001.WT')

reset SFR

Description

A function for reseting SFR to zero

Usage

reset_sfr(x, sfr)

Arguments

x

numeric or DoOR response matrix, input values

sfr

numeric or character, either a value to subtract if x is a vector or an InChIKey if x is a DoOR response matrix

Details

Performs a simple subtraction of the SFR value.

Author(s)

Daniel Münch <[email protected]>

Examples

# load data
library(DoOR.data)
data(door_response_matrix)

# create a response matrix with the SFR reset to 0
door_response_matrix_SFRreset <- reset_sfr(door_response_matrix, "SFR")

compute the data pairwise and and selects a pair with the lowest "MD" value.

Description

compute the data pairwise using function calculate_model and selects a pair with the lowest "MD" value.

Usage

select_model(candidate, data_candidate, merged_data,
  overlapValues = door_default_values("overlapValues"),
  merged = door_default_values("merged"))

Arguments

candidate

a character vector, contains the names of studies.

data_candidate

a data frame, odorant response data that only contains value columns.

merged_data

numeric vector, merged data

overlapValues

numeric, a criterion using to refuse a data set that has not enough overlap value.

merged

logical, if merged is TRUE, calculate models between merged_data and candidate data. If FALSE, calculate models between candidates.

Details

This function is used in model_response to select the first pair or next data set for merging. The output is a list containing "selected.x" and "selected.y" that specify which data plots against another, and "best.model" that is used in function project_points.

Author(s)

Shouwen Ma <[email protected]>

See Also

project_points,model_response

Examples

# load data
library(DoOR.data)
data(ac3B)

# split into data and header
studies <- names(ac3B)[c(7:8)]
data_candidate <- ac3B[,c(7:8)]

# rescale data
norm_data_candidate <- apply(data_candidate, 2, door_norm)

# find the best fitting model
select_model(candidate = studies, data_candidate = norm_data_candidate,
             merged = FALSE)

Calculate the sparseness of a vector.

Description

Sparseness can be calculated as lifetime kurtosis (LTK, Willmore and Tolhurst, 2001) or as lifetime sparseness (LTS, Bhandawat et al., 2007).

Usage

sparse(x, method = "ltk")

Arguments

x

numerical input vector

method

type of sparseness measure, either 'ltk' for lifetime kurtosis or 'lts' for lifetime sparseness (see references).

Details

LTS scales between \[0,1\] while LTK is not restricted. LTS only takes positive values.

Author(s)

Daniel Münch <[email protected]>

References

Bhandawat, V., Olsen, S.R., Gouwens, N.W., Schlief, M.L., Wilson, R.I., 2007. Sensory processing in the Drosophila antennal lobe increases reliability and separability of ensemble odor representations. Nature neuroscience 10, 1474–82. doi:10.1038/nn1976

Willmore, B., Tolhurst, D.J., 2001. Characterizing the sparseness of neural codes. Network 12, 255–270. doi:10.1080/net.12.3.255.270


trans_id

Description

Translate chemical identifiers from one to the other.

Usage

trans_id(x, from = "CAS", to = "InChIKey",
  odor_data = door_default_values("odor"))

Arguments

x

character vector, one or many chemical identifiers

from

character, the type of identifier to translate from (one of the column names of “odor“)

to

character, the type of identifier to translate from (one of the column names of “odor“)

odor_data

the data frame containing the odor information (defaults to “odor“).

Value

character vector of translated chemical identifiers

Examples

# load data
library(DoOR.data)

# transform CAS to InChIKey
trans_id("123-92-2")

# transform Name to InChIKey
trans_id("isopentyl acetate", "Name")

# transform SMILE to InChIKey
trans_id("C(C(C)C)COC(=O)C", "SMILES", "Name")

update response matrix

Description

update the globally response matrix and the unglobally normalized response matrix door_response_matrix_non_normalized by introducing new consensus response data of given receptor.

Usage

update_door_database(receptor, permutation = TRUE, perm,
  response_matrix_nn = door_default_values("door_response_matrix_non_normalized"),
  response_matrix = door_default_values("door_response_matrix"),
  responseRange = door_default_values("door_response_range"),
  weightGlobNorm = door_default_values("door_global_normalization_weights"),
  select.MDValue = door_default_values("select.MDValue"), strict = TRUE,
  overlapValues = door_default_values("overlapValues"),
  door_excluded_data = door_default_values("door_excluded_data"),
  plot = FALSE)

Arguments

receptor

character string, name of given odorant receptor.

permutation

logical, if TRUE, the sequence is chosen from permutation, if FALSE, sequence is chosen by the routine process.

perm

a matrix with one sequence of study names per row, if empty, all possible permutations of study names will be provided.

response_matrix_nn

data frame, response data that has not been globally normalized.

response_matrix

data frame, globally normalized response data.

responseRange

data frame, response range of studies.

weightGlobNorm

data frame, weight matrix for global normalization.

select.MDValue

the minimum mean distance between studies to perfom a merge (used if permutation == FALSE or if permutation == TRUE AND strict == TRUE)

strict

logical, if TRUE merging a permutation will be stopped once a single merge has a mean distance above select.MDValue (only valid if permutation == TRUE)

overlapValues

minimum overlap between studies to perfom a merge

door_excluded_data

the data frame that contains the list of excluded data sets.

plot

logical

Details

The merging sequence could be arranged by the routine process (using model_response or taking the optimized sequence that is chosen from permutations. The mean correlation between merged responses and each original recording will be computed for each permutation, the optimozed sequence is with the highest correlation.

Author(s)

Shouwen Ma <[email protected]>

Shouwen Ma <[email protected]>

See Also

model_response,model_response_seq

Examples

## Not run: 
# load data
library(DoOR.data)
load_door_data()
# update the entry "Or67b" of data "door_response_matrix" and
# "door_response_matrix_non_normalized" with permutations.
 update_door_database(receptor="Or67b", permutation = TRUE)

## End(Not run)

update_door_odorinfo

Description

Update the DoOR odor data with info from odor. For the function to work, all DoOR data has to be loaded to the current environment.

Usage

update_door_odorinfo()

Author(s)

Daniel Münch, [email protected]

Examples

# load data
load_door_data(nointeraction = TRUE)  
# modify odor
odor[1,1] <- "acid"

# run 
update_door_odorinfo()

# check that data sets have been updated
head(Or22a)