Title: | Market Structure, Concentration and Inequality Measures |
---|---|
Description: | Based on individual market shares of all participants in a market or space, the package offers a set of different structural and concentration measures frequently - and not so frequently - used in research and in practice. Measures can be calculated in groups or individually. The calculated measure or the resulting vector in table format should help practitioners make more informed decisions. Methods used in this package are from: 1. Chang, E. J., Guerra, S. M., de Souza Penaloza, R. A. & Tabak, B. M. (2005) "Banking concentration: the Brazilian case". 2. Cobham, A. and A. Summer (2013). "Is It All About the Tails? The Palma Measure of Income Inequality". 3. Garcia Alba Idunate, P. (1994). "Un Indice de dominancia para el analisis de la estructura de los mercados". 4. Ginevicius, R. and S. Cirba (2009). "Additive measurement of market concentration" <doi:10.3846/1611-1699.2009.10.191-198>. 5. Herfindahl, O. C. (1950), "Concentration in the steel industry" (PhD thesis). 6. Hirschmann, A. O. (1945), "National power and structure of foreign trade". 7. Melnik, A., O. Shy, and R. Stenbacka (2008), "Assessing market dominance" <doi:10.1016/j.jebo.2008.03.010>. 8. Palma, J. G. (2006). "Globalizing Inequality: 'Centrifugal' and 'Centripetal' Forces at Work". 9. Shannon, C. E. (1948). "A Mathematical Theory of Communication". 10. Simpson, E. H. (1949). "Measurement of Diversity" <doi:10.1038/163688a0>. |
Authors: | Andreas Schneider [aut, cre] , Sebastian Wojcik [rev], Christopher T. Kenny [rev] |
Maintainer: | Andreas Schneider <[email protected]> |
License: | GPL (>= 3) |
Version: | 0.2.0 |
Built: | 2024-12-27 06:15:04 UTC |
Source: | https://github.com/ropensci/concstats |
A wrapper for the proposed concentration measures
concstats_all_comp(x, normalized = FALSE, na.rm = TRUE, digits = NULL)
concstats_all_comp(x, normalized = FALSE, na.rm = TRUE, digits = NULL)
x |
A non-negative numeric vector. |
normalized |
Logical. Argument specifying whether or not a normalized
value is required. Must be either |
na.rm |
A logical vector that indicates whether |
digits |
A non-null value for digits specifies the minimum number of
significant digits to be printed in values. The default is |
concstats_all_comp
returns all proposed group measures in a one step
procedure with default settings if not otherwise specified.
A data.frame
.
concstats_all_mstruct()
, concstats_all_inequ()
Other Competition/Concentration measures:
concstats_comp()
,
concstats_dom()
,
concstats_hhi()
,
concstats_hhi_d()
,
concstats_hhi_min()
,
concstats_sten()
# a vector of market shares x <- c(0.35, 0.4, 0.05, 0.1, 0.06, 0.04) concstats_all_comp(x, digits = 2)
# a vector of market shares x <- c(0.35, 0.4, 0.05, 0.1, 0.06, 0.04) concstats_all_comp(x, digits = 2)
A wrapper for the proposed inequality measures
concstats_all_inequ(x, normalized = FALSE, na.rm = TRUE, digits = NULL)
concstats_all_inequ(x, normalized = FALSE, na.rm = TRUE, digits = NULL)
x |
A non-negative numeric vector. |
normalized |
Logical. Argument specifying whether or not a normalized
value is required. Must be either |
na.rm |
A logical vector that indicates whether |
digits |
A non-null value for digits specifies the minimum number of
significant digits to be printed in values. The default is |
concstats_all_inequ
returns all proposed group measures in a one step
procedure with default settings if not otherwise specified.
A data.frame
.
concstats_all_mstruct()
, concstats_all_comp()
Other Concentration and inequality measures:
concstats_entropy()
,
concstats_gini()
,
concstats_grs()
,
concstats_inequ()
,
concstats_palma()
,
concstats_simpson()
# a vector of market shares x <- c(0.35, 0.4, 0.05, 0.1, 0.06, 0.04) concstats_all_inequ(x, digits = 2)
# a vector of market shares x <- c(0.35, 0.4, 0.05, 0.1, 0.06, 0.04) concstats_all_inequ(x, digits = 2)
A wrapper for the proposed structural measures
concstats_all_mstruct(x, na.rm = TRUE, digits = NULL)
concstats_all_mstruct(x, na.rm = TRUE, digits = NULL)
x |
A non-negative numeric vector. |
na.rm |
A logical vector that indicates whether |
digits |
A non-null value for digits specifies the minimum number of
significant digits to be printed in values. The default is |
concstats_all_mstruct
returns all proposed group measures in a
one step procedure with default settings if not otherwise specified.
A data.frame
.
concstats_all_comp()
, concstats_all_inequ()
Other Market structure measures:
concstats_firm()
,
concstats_mstruct()
,
concstats_nrs_eq()
,
concstats_top()
,
concstats_top3()
,
concstats_top3_df()
,
concstats_top5()
,
concstats_top5_df()
,
concstats_top_df()
# a vector of market shares x <- c(0.4, 0.2, 0.25, 0.1, 0.05) concstats_all_mstruct(x, digits = 2)
# a vector of market shares x <- c(0.4, 0.2, 0.25, 0.1, 0.05) concstats_all_mstruct(x, digits = 2)
A set of different concentration and competition measures.
concstats_comp(x, normalized = FALSE, type = c("hhi", "hhi_d", "hhi_min", "dom", "sten", "all"), na.rm = TRUE, digits = NULL)
concstats_comp(x, normalized = FALSE, type = c("hhi", "hhi_d", "hhi_min", "dom", "sten", "all"), na.rm = TRUE, digits = NULL)
x |
A non-negative numeric vector. |
normalized |
Logical. Argument specifying whether or not a normalized
value is required. Ranges from (0, 1) and often used for comparison over
time. Must be either |
type |
A character string of the measure to be calculated, can be abbreviated with the first letter. Defaults to "hhi". Input is not case-sensitive. |
na.rm |
A logical vector that indicates whether |
digits |
A non-null value for digits specifies the minimum number of
significant digits to be printed in values. The default is |
concstats_comp
is a wrapper for the proposed concentration measures.
All measures can be accessed individually.
concstats_hhi()
returns the Herfindahl-Hirschman index (HHI).
concstats_hhi
, can be calculated individually as a normalized
measure changing the default setting to TRUE
.
concstats_hhi_d()
returns the dual of the HHI.
concstats_hhi_min()
calculates the minimum of the HHI index.
concstats_dom()
calculates the dominance index.
concstats_sten()
calculates the stenbacka index.
concstats_all_comp()
is a wrapper that computes all measures in a one
step procedure. For more details or references please see the help page of
the respective function.
A single numeric measure in decimal form or data frame
.
The vector of market shares should be in a decimal form corresponding
to total shares of individual firms/units. The vector should sum up to 1.
Alternatively, the user might use concstats_shares()
to converting raw
variables, e.g. loans or sales into shares.
concstats_concstats()
, concstats_mstruct()
, concstats_inequ()
Other Competition/Concentration measures:
concstats_all_comp()
,
concstats_dom()
,
concstats_hhi()
,
concstats_hhi_d()
,
concstats_hhi_min()
,
concstats_sten()
# a vector of market shares x <- c(0.35, 0.4, 0.05, 0.1, 0.06, 0.04) # the Herfindahl-Hirschman index of the vector concstats_comp(x, type = "hhi") # individual measure concstats_sten(x) # complete group measures concstats_comp(x, type = "all", digits = 2)
# a vector of market shares x <- c(0.35, 0.4, 0.05, 0.1, 0.06, 0.04) # the Herfindahl-Hirschman index of the vector concstats_comp(x, type = "hhi") # individual measure concstats_sten(x) # complete group measures concstats_comp(x, type = "all", digits = 2)
A convenience function which calculates a selected set of different market structure, inequality and concentration measures more or less commonly used, e.g. k-firm ratios, Entropy, HHI, Palma ratio, and others in a one step procedure to provide a first overview.
concstats_concstats(x, na.rm = TRUE, digits = NULL)
concstats_concstats(x, na.rm = TRUE, digits = NULL)
x |
A non-negative numeric vector. |
na.rm |
A logical vector that indicates whether |
digits |
A non-null value for digits specifies the minimum number of
significant digits to be printed in values. The default is |
concstats_concstats
computes a set of different and selected
structural, inequality, and concentration measures in a one step procedure.
The resulting data frame
contains eight measures: number of firms with
market share, numbers equivalent, the cumulative share of the top
(top 3 and top 5) firm(s) in percentage, the hhi index, the entropy index,
and the palma ratio. However, all measures can be computed individually or
in groups.
A data frame
of numeric measures with default settings.
The vector of market shares should be in a decimal form corresponding to the total share of individual firms/units. The vector should sum up to 1, otherwise a numeric vector will be converted into decimal form.
concstats_mstruct()
, concstats_comp()
, concstats_inequ()
# a vector of market shares x <- c(0.35, 0.4, 0.05, 0.1, 0.06, 0.04) # a selected set of different structural, concentration, and inequality # measures concstats_concstats(x, digits = 2)
# a vector of market shares x <- c(0.35, 0.4, 0.05, 0.1, 0.06, 0.04) # a selected set of different structural, concentration, and inequality # measures concstats_concstats(x, digits = 2)
An alternative measure which can be used in case of mergers.
concstats_dom(x, na.rm = TRUE)
concstats_dom(x, na.rm = TRUE)
x |
A non-negative numeric vector. |
na.rm |
A logical vector that indicates whether |
concstats_dom
calculates a dominance index, which measures the
concentration within the Herfindahl-Hirschman index, that is, the
concentration within the concentration.
A single numeric measure in decimal form.
Garcia Alba Idunate, P. (1994). "Un Indice de dominancia para el analisis de la estructura de los mercados". El Trimestre Economico, 61: 499-524.
Other Competition/Concentration measures:
concstats_all_comp()
,
concstats_comp()
,
concstats_hhi()
,
concstats_hhi_d()
,
concstats_hhi_min()
,
concstats_sten()
# a vector of market shares x <- c(0.35, 0.4, 0.05, 0.1, 0.06, 0.04) concstats_dom(x) # a vector with NA values x <- c(0.4, 0.2, 0.25, 0.1, 0.05, NA) concstats_dom(x, na.rm = FALSE)
# a vector of market shares x <- c(0.35, 0.4, 0.05, 0.1, 0.06, 0.04) concstats_dom(x) # a vector with NA values x <- c(0.4, 0.2, 0.25, 0.1, 0.05, NA) concstats_dom(x, na.rm = FALSE)
Shannon Entropy
concstats_entropy(x, normalized = TRUE, na.rm = TRUE)
concstats_entropy(x, normalized = TRUE, na.rm = TRUE)
x |
A non-negative numeric vector. |
normalized |
Logical. Argument specifying whether or not a normalized
value is required. Must be either |
na.rm |
A logical vector that indicates whether |
A single numeric measure.
Shannon, C. E. (1948). "A Mathematical Theory of Communication", The Bell System Technical Journal (Nokia Bell Labs).
Other Concentration and inequality measures:
concstats_all_inequ()
,
concstats_gini()
,
concstats_grs()
,
concstats_inequ()
,
concstats_palma()
,
concstats_simpson()
# a vector of market shares x <- c(0.4, 0.2, 0.25, 0.1, 0.05) concstats_entropy(x, normalized = TRUE) # a vector with NA values x <- c(0.4, 0.2, 0.25, 0.1, 0.05, NA) concstats_entropy(x, na.rm = FALSE)
# a vector of market shares x <- c(0.4, 0.2, 0.25, 0.1, 0.05) concstats_entropy(x, normalized = TRUE) # a vector with NA values x <- c(0.4, 0.2, 0.25, 0.1, 0.05, NA) concstats_entropy(x, na.rm = FALSE)
Number of firms
concstats_firm(x, na.rm = TRUE)
concstats_firm(x, na.rm = TRUE)
x |
A non-negative numeric vector. |
na.rm |
Logical vector that indicates whether |
A positive integer.
Other Market structure measures:
concstats_all_mstruct()
,
concstats_mstruct()
,
concstats_nrs_eq()
,
concstats_top()
,
concstats_top3()
,
concstats_top3_df()
,
concstats_top5()
,
concstats_top5_df()
,
concstats_top_df()
# a vector of market shares x <- c(0.4, 0.2, 0.25, 0.1, 0.05) concstats_firm(x)
# a vector of market shares x <- c(0.4, 0.2, 0.25, 0.1, 0.05) concstats_firm(x)
Gini coefficient
concstats_gini(x, normalized = TRUE, na.rm = TRUE)
concstats_gini(x, normalized = TRUE, na.rm = TRUE)
x |
A non-negative numeric vector. |
normalized |
Logical. Argument specifying whether or not a normalized
value is required. Must be either |
na.rm |
A logical vector that indicates whether |
A single numeric value.
Other Concentration and inequality measures:
concstats_all_inequ()
,
concstats_entropy()
,
concstats_grs()
,
concstats_inequ()
,
concstats_palma()
,
concstats_simpson()
# a vector of market shares x <- c(0.4, 0.2, 0.25, 0.1, 0.05) concstats_gini(x, normalized = TRUE) # a vector with NA values x <- c(0.4, 0.2, 0.25, 0.1, 0.05, NA) concstats_gini(x, na.rm = FALSE)
# a vector of market shares x <- c(0.4, 0.2, 0.25, 0.1, 0.05) concstats_gini(x, normalized = TRUE) # a vector with NA values x <- c(0.4, 0.2, 0.25, 0.1, 0.05, NA) concstats_gini(x, na.rm = FALSE)
GRS measure
concstats_grs(x, na.rm = TRUE)
concstats_grs(x, na.rm = TRUE)
x |
A non-negative numeric vector. |
na.rm |
a logical vector that indicates whether |
A single numeric measure in decimal form.
Ginevicius, R. and S. Cirba (2009). "Additive measurement of market concentration", Journal of Business Economics and Management, 10(3), 191-198.
Other Concentration and inequality measures:
concstats_all_inequ()
,
concstats_entropy()
,
concstats_gini()
,
concstats_inequ()
,
concstats_palma()
,
concstats_simpson()
# a vector of market shares x <- c(0.4, 0.2, 0.25, 0.1, 0.05) concstats_grs(x) # a vector with NA values x <- c(0.4, 0.2, 0.25, 0.1, 0.05, NA) concstats_grs(x, na.rm = FALSE)
# a vector of market shares x <- c(0.4, 0.2, 0.25, 0.1, 0.05) concstats_grs(x) # a vector with NA values x <- c(0.4, 0.2, 0.25, 0.1, 0.05, NA) concstats_grs(x, na.rm = FALSE)
A measure of industry concentration and widely used in merger control.
concstats_hhi(x, normalized = FALSE, na.rm = TRUE)
concstats_hhi(x, normalized = FALSE, na.rm = TRUE)
x |
A non-negative numeric vector. |
normalized |
Logical. Argument specifying whether or not a normalized
value is required. Ranges from 0, 1 and often used for comparison over
time. Must be either |
na.rm |
A logical vector that indicates whether |
concstats_hhi
calculates the widely used Herfindahl-Hirschman
Index (Herfindahl, 1950 and Hirschman, 1945). The index is calculated by
squaring the market share of each firm competing in the market and then
summing the resulting numbers.
A single numeric measure in decimal form.
Herfindahl, O. C. (1950), "Concentration in the steel industry" (PhD thesis), Columbia University.
Hirschman, A. O. (1945), "National power and structure of foreign trade". Berkeley, CA: University of California Press.
Other Competition/Concentration measures:
concstats_all_comp()
,
concstats_comp()
,
concstats_dom()
,
concstats_hhi_d()
,
concstats_hhi_min()
,
concstats_sten()
# a vector of market shares x <- c(0.35, 0.4, 0.05, 0.1, 0.06, 0.04) concstats_hhi(x) # a vector with NA values x <- c(0.4, 0.2, 0.25, 0.1, 0.05, NA) concstats_hhi(x, na.rm = FALSE)
# a vector of market shares x <- c(0.35, 0.4, 0.05, 0.1, 0.06, 0.04) concstats_hhi(x) # a vector with NA values x <- c(0.4, 0.2, 0.25, 0.1, 0.05, NA) concstats_hhi(x, na.rm = FALSE)
The dual of the HHI reflects the fraction of participants that do have market participation.
concstats_hhi_d(x, na.rm = TRUE)
concstats_hhi_d(x, na.rm = TRUE)
x |
A non-negative numeric vector. |
na.rm |
A logical vector that indicates whether |
concstats_hhi_d
is the dual of the HHI index, which indicates
the percentage which represents the fraction of the banks that do not have
market participation.
A single numeric measure in decimal form.
Chang, E. J., Guerra, S. M., de Souza Penaloza, R. A. & Tabak, B. M. (2005) Banking concentration: the Brazilian case. In Financial Stability Report. Brasilia: Banco Central do Brasil, 4: 109-129.
Other Competition/Concentration measures:
concstats_all_comp()
,
concstats_comp()
,
concstats_dom()
,
concstats_hhi()
,
concstats_hhi_min()
,
concstats_sten()
# a vector of market shares x <- c(0.35, 0.4, 0.05, 0.1, 0.06, 0.04) concstats_hhi_d(x) # a vector with NA values x <- c(0.4, 0.2, 0.25, 0.1, 0.05, NA) concstats_hhi_d(x, na.rm = FALSE)
# a vector of market shares x <- c(0.35, 0.4, 0.05, 0.1, 0.06, 0.04) concstats_hhi_d(x) # a vector with NA values x <- c(0.4, 0.2, 0.25, 0.1, 0.05, NA) concstats_hhi_d(x, na.rm = FALSE)
Minimum of Herfindahl-Hirschman Index
concstats_hhi_min(x, na.rm = TRUE)
concstats_hhi_min(x, na.rm = TRUE)
x |
A non-negative numeric vector. |
na.rm |
A logical vector that indicates whether |
Calculates the minimum of the Herfindahl-Hirschman index, that is, the equivalent of all participants in the market with equal market shares.
A single numeric measure in decimal form.
Other Competition/Concentration measures:
concstats_all_comp()
,
concstats_comp()
,
concstats_dom()
,
concstats_hhi()
,
concstats_hhi_d()
,
concstats_sten()
# a vector of market shares x <- c(0.35, 0.4, 0.05, 0.1, 0.06, 0.04) concstats_hhi_min(x) # a vector with NA values x <- c(0.4, 0.2, 0.25, 0.1, 0.05, NA) concstats_hhi_min(x, na.rm = FALSE)
# a vector of market shares x <- c(0.35, 0.4, 0.05, 0.1, 0.06, 0.04) concstats_hhi_min(x) # a vector with NA values x <- c(0.4, 0.2, 0.25, 0.1, 0.05, NA) concstats_hhi_min(x, na.rm = FALSE)
A set of different inequality and diversity measures.
concstats_inequ(x, normalized = FALSE, type = c("entropy", "gini", "simpson", "palma", "grs", "all"), na.rm = TRUE, digits = NULL)
concstats_inequ(x, normalized = FALSE, type = c("entropy", "gini", "simpson", "palma", "grs", "all"), na.rm = TRUE, digits = NULL)
x |
A non-negative numeric vector. |
normalized |
Logical. Argument of the functions
|
type |
A character string of the measure to be calculated, defaults to
|
na.rm |
A logical vector that indicates whether |
digits |
A non-null value for digits specifies the minimum number of
significant digits to be printed in values. The default is |
concstats_inequ
is a wrapper for the proposed inequality measures.
All measures can be accessed individually.
concstats_entropy()
returns the Shannon entropy. concstats_entropy
You can normalize the entropy measures by setting normalized = TRUE
.
concstats_gini()
calculates the gini coefficient. concstats_gini
You can normalize the gini measures by setting normalized = TRUE
.
concstats_simpson()
calculates the gini-simpson index.
concstats_palma()
calculates the palma ratio of inequality.
concstats_grs()
calculates an alternative concentration measure.
concstats_all_inequ()
returns all measures in a one step procedure.
For more details or references please see the help page of the respective
function.
The calculated numeric measure or a data frame
concstats_concstats()
,concstats_mstruct()
,concstats_comp()
Other Concentration and inequality measures:
concstats_all_inequ()
,
concstats_entropy()
,
concstats_gini()
,
concstats_grs()
,
concstats_palma()
,
concstats_simpson()
# a vector of market shares x <- c(0.4, 0.2, 0.25, 0.1, 0.05) # Calculate the Palma ratio concstats_inequ(x, type = "palma") # Calculate the entropy measure directly concstats_entropy(x, normalized = TRUE) # Calculate the group measures concstats_inequ(x, type = "all", digits = 2)
# a vector of market shares x <- c(0.4, 0.2, 0.25, 0.1, 0.05) # Calculate the Palma ratio concstats_inequ(x, type = "palma") # Calculate the entropy measure directly concstats_entropy(x, normalized = TRUE) # Calculate the group measures concstats_inequ(x, type = "all", digits = 2)
Set of different market structure measures to reflect a given market structure.
concstats_mstruct(x, type = c("firm", "nrs_eq", "top", "top3", "top5", "all"), na.rm = TRUE, digits = NULL)
concstats_mstruct(x, type = c("firm", "nrs_eq", "top", "top3", "top5", "all"), na.rm = TRUE, digits = NULL)
x |
A non-negative numeric vector. |
type |
A character string of the measure to be calculated, can be abbreviated with the first letter. Defaults to "firm". Input is not case-sensitive. |
na.rm |
A logical vector that indicates whether |
digits |
A non-null value for digits specifies the minimum number of
significant digits to be printed in values. The default is |
concstats_mstruct
is a wrapper for the proposed structural measures.
concstats_firm()
, returns the number of firms with a given market share.
concstats_nrs_eq()
computes the reciprocal of the HHI, which indicates
the equivalent number of firms of the same size.
concstats_top()
, concstats_top3()
, and concstats_top5()
calculate the cumulative share of the top (top 3 and top 5) firm(s) and
returns the value in percentage.
concstats_all_mstruct()
computes all measures in a one step procedure.
All measures can be computed individually.
concstats_top_df()
, concstats_top3_df()
, and concstats_top5_df()
are
slight variations. Firm id or ranking might be of interest. In this case an
additional id or firm variable is needed. The functions will return a data
frame. These functions are just individually accessible.
A single calculated numeric measure or data frame
.
The vector of market shares should be in a decimal form corresponding
to total shares of individual firms/units.The sum of the vector should sum up
to 1. Alternatively, the user might use concstats_shares()
to converting
raw variables, e.g. loans or sales into shares.
concstats_concstats()
,concstats_comp()
,concstats_inequ()
Other Market structure measures:
concstats_all_mstruct()
,
concstats_firm()
,
concstats_nrs_eq()
,
concstats_top()
,
concstats_top3()
,
concstats_top3_df()
,
concstats_top5()
,
concstats_top5_df()
,
concstats_top_df()
# a vector of market shares x <- c(0.35, 0.4, 0.05, 0.1, 0.06, 0.04) # the number of firms with market share concstats_mstruct(x, type = "firm") # Calculate top market share individually concstats_top(x) # Calculate the market structure group measures concstats_mstruct(x, type = "all", digits = 2)
# a vector of market shares x <- c(0.35, 0.4, 0.05, 0.1, 0.06, 0.04) # the number of firms with market share concstats_mstruct(x, type = "firm") # Calculate top market share individually concstats_top(x) # Calculate the market structure group measures concstats_mstruct(x, type = "all", digits = 2)
Numbers equivalent
concstats_nrs_eq(x, na.rm = TRUE)
concstats_nrs_eq(x, na.rm = TRUE)
x |
A non-negative numeric vector. |
na.rm |
A logical vector that indicates whether |
A positive numeric value.
Other Market structure measures:
concstats_all_mstruct()
,
concstats_firm()
,
concstats_mstruct()
,
concstats_top()
,
concstats_top3()
,
concstats_top3_df()
,
concstats_top5()
,
concstats_top5_df()
,
concstats_top_df()
# a vector of market shares x <- c(0.4, 0.2, 0.25, 0.1, 0.05) concstats_nrs_eq(x)
# a vector of market shares x <- c(0.4, 0.2, 0.25, 0.1, 0.05) concstats_nrs_eq(x)
Palma ratio
concstats_palma(x, na.rm = TRUE)
concstats_palma(x, na.rm = TRUE)
x |
A non-negative numeric vector. |
na.rm |
A logical vector that indicates whether |
concstats_palma
measures the ratio of inequality (normally used with
income inequality) of the top 10 percent to the bottom 40 percent.
A single numeric measure.
Palma, J. G. (2006). "Globalizing Inequality: 'Centrifugal' and 'Centripetal' Forces at Work", DESA Working Paper No. 35.
Other Concentration and inequality measures:
concstats_all_inequ()
,
concstats_entropy()
,
concstats_gini()
,
concstats_grs()
,
concstats_inequ()
,
concstats_simpson()
# a vector of market shares x <- c(0.4, 0.2, 0.25, 0.1, 0.05) concstats_palma(x) # a vector with NA values x <- c(0.4, 0.2, 0.25, 0.1, 0.05, NA) concstats_palma(x, na.rm = FALSE)
# a vector of market shares x <- c(0.4, 0.2, 0.25, 0.1, 0.05) concstats_palma(x) # a vector with NA values x <- c(0.4, 0.2, 0.25, 0.1, 0.05, NA) concstats_palma(x, na.rm = FALSE)
Gini-Simpson Index
concstats_simpson(x, na.rm = TRUE)
concstats_simpson(x, na.rm = TRUE)
x |
A non-negative numeric vector. |
na.rm |
A logical vector that indicates whether |
concstats_simpson
is the Gini-Simpson index, also known as
the Gini impurity (Gini's diversity index) in Machine Learning, Gibbs-Martin
index or Blau index in sociology and management studies. This index ranges
from (0, 1).
A single numeric value in decimal form.
Simpson, E. H. (1949). "Measurement of Diversity", Nature, 163, 688.
Jost, L. (2006). "Entropy and Diversity". Oikos, 113(2), 363-375.
Other Concentration and inequality measures:
concstats_all_inequ()
,
concstats_entropy()
,
concstats_gini()
,
concstats_grs()
,
concstats_inequ()
,
concstats_palma()
# a vector of market shares x <- c(0.4, 0.2, 0.25, 0.1, 0.05) concstats_simpson(x) # a vector with NA values x <- c(0.4, 0.2, 0.25, 0.1, 0.05, NA) concstats_simpson(x, na.rm = FALSE)
# a vector of market shares x <- c(0.4, 0.2, 0.25, 0.1, 0.05) concstats_simpson(x) # a vector with NA values x <- c(0.4, 0.2, 0.25, 0.1, 0.05, NA) concstats_simpson(x, na.rm = FALSE)
The measure suggests an approach that classifies when an individual firm has a dominant position and therefore assesses market dominance.
concstats_sten(x, na.rm = TRUE)
concstats_sten(x, na.rm = TRUE)
x |
A non-negative numeric vector. |
na.rm |
A logical vector that indicates whether |
concstats_sten
calculates the Stenbacka index,
which indicates the market share of a dominant position.
A single numeric measure in decimal form.
Melnik, A., Shy, Oz, Stenbacka, R., (2008), "Assessing market dominance", Journal of Economic Behavior and Organization, 68: pp. 63-72.
Other Competition/Concentration measures:
concstats_all_comp()
,
concstats_comp()
,
concstats_dom()
,
concstats_hhi()
,
concstats_hhi_d()
,
concstats_hhi_min()
# a vector of market shares x <- c(0.35, 0.4, 0.05, 0.1, 0.06, 0.04) concstats_sten(x) # a vector with NA values x <- c(0.4, 0.2, 0.25, 0.1, 0.05, NA) concstats_sten(x, na.rm = FALSE)
# a vector of market shares x <- c(0.35, 0.4, 0.05, 0.1, 0.06, 0.04) concstats_sten(x) # a vector with NA values x <- c(0.4, 0.2, 0.25, 0.1, 0.05, NA) concstats_sten(x, na.rm = FALSE)
Top market share
concstats_top(x, na.rm = TRUE)
concstats_top(x, na.rm = TRUE)
x |
A non-negative numeric vector. |
na.rm |
A logical vector that indicates whether |
A positive numeric value, which indicates the top market share in percent.
Other Market structure measures:
concstats_all_mstruct()
,
concstats_firm()
,
concstats_mstruct()
,
concstats_nrs_eq()
,
concstats_top3()
,
concstats_top3_df()
,
concstats_top5()
,
concstats_top5_df()
,
concstats_top_df()
# a vector of market shares x <- c(0.4, 0.2, 0.25, 0.1, 0.05) concstats_top(x)
# a vector of market shares x <- c(0.4, 0.2, 0.25, 0.1, 0.05) concstats_top(x)
Top market share data frame
concstats_top_df(x, y, na.rm = TRUE)
concstats_top_df(x, y, na.rm = TRUE)
x |
A data frame. |
y |
A non-negative vector of shares. |
na.rm |
A logical vector that indicates whether |
A data frame, which indicates an id or firm column and the top market share in decimal form.
Other Market structure measures:
concstats_all_mstruct()
,
concstats_firm()
,
concstats_mstruct()
,
concstats_nrs_eq()
,
concstats_top()
,
concstats_top3()
,
concstats_top3_df()
,
concstats_top5()
,
concstats_top5_df()
# some data id <- c(1, 2, 3, 4, 5) x <- c(0.2, 0.25, 0.4, 0.1, 0.05) test_df <- data.frame(id, x) concstats_top_df(test_df, "x")
# some data id <- c(1, 2, 3, 4, 5) x <- c(0.2, 0.25, 0.4, 0.1, 0.05) test_df <- data.frame(id, x) concstats_top_df(test_df, "x")
Top 3 market share
concstats_top3(x, na.rm = TRUE)
concstats_top3(x, na.rm = TRUE)
x |
A non-negative numeric vector. |
na.rm |
A logical vector that indicates whether |
A positive numeric value, which indicates the cumulative sum of the top 3 market shares as a percentage.
Other Market structure measures:
concstats_all_mstruct()
,
concstats_firm()
,
concstats_mstruct()
,
concstats_nrs_eq()
,
concstats_top()
,
concstats_top3_df()
,
concstats_top5()
,
concstats_top5_df()
,
concstats_top_df()
# a vector of market shares x <- c(0.4, 0.2, 0.25, 0.1, 0.05) concstats_top3(x)
# a vector of market shares x <- c(0.4, 0.2, 0.25, 0.1, 0.05) concstats_top3(x)
Top 3 market shares data frame
concstats_top3_df(x, y, na.rm = TRUE)
concstats_top3_df(x, y, na.rm = TRUE)
x |
A data frame. |
y |
A non-negative vector of shares. |
na.rm |
A logical vector that indicates whether |
A data frame, which indicates an id or firm column and the top 3 market shares in decimal form.
Other Market structure measures:
concstats_all_mstruct()
,
concstats_firm()
,
concstats_mstruct()
,
concstats_nrs_eq()
,
concstats_top()
,
concstats_top3()
,
concstats_top5()
,
concstats_top5_df()
,
concstats_top_df()
# some data id <- c(1, 2, 3, 4, 5) x <- c(0.2, 0.25, 0.4, 0.1, 0.05) test_df <- data.frame(id, x) concstats_top3_df(test_df, "x")
# some data id <- c(1, 2, 3, 4, 5) x <- c(0.2, 0.25, 0.4, 0.1, 0.05) test_df <- data.frame(id, x) concstats_top3_df(test_df, "x")
Top 5 market share
concstats_top5(x, na.rm = TRUE)
concstats_top5(x, na.rm = TRUE)
x |
A non-negative numeric vector. |
na.rm |
A logical vector that indicates whether |
A positive numeric value, which indicates the cumulative sum of the top 5 market shares as a percentage.
Other Market structure measures:
concstats_all_mstruct()
,
concstats_firm()
,
concstats_mstruct()
,
concstats_nrs_eq()
,
concstats_top()
,
concstats_top3()
,
concstats_top3_df()
,
concstats_top5_df()
,
concstats_top_df()
# a vector of market shares x <- c(0.4, 0.2, 0.25, 0.1, 0.05) concstats_top5(x)
# a vector of market shares x <- c(0.4, 0.2, 0.25, 0.1, 0.05) concstats_top5(x)
Top 5 market shares data frame
concstats_top5_df(x, y, na.rm = TRUE)
concstats_top5_df(x, y, na.rm = TRUE)
x |
A data frame. |
y |
A non-negative vector of shares. |
na.rm |
A logical vector that indicates whether |
A data frame, which indicates an id or firm column and the top 5 market shares in decimal form.
Other Market structure measures:
concstats_all_mstruct()
,
concstats_firm()
,
concstats_mstruct()
,
concstats_nrs_eq()
,
concstats_top()
,
concstats_top3()
,
concstats_top3_df()
,
concstats_top5()
,
concstats_top_df()
# some data id <- c(1, 2, 3, 4, 5) x <- c(0.2, 0.25, 0.4, 0.1, 0.05) test_df <- data.frame(id, x)
# some data id <- c(1, 2, 3, 4, 5) x <- c(0.2, 0.25, 0.4, 0.1, 0.05) test_df <- data.frame(id, x)
data set with 22 paired Paraguayan credit cooperatives (2016, 2018)
creditcoops
creditcoops
A data frame with 44 rows and 5 variables:
coop_id
double, ID of the credit cooperative
year
integer, sample year
total_loans
double, total loans granted (USD) per year and cooperative
paired
integer, paires of cooperatives
total_loans_log
double, the natural log of total loans
real names of the cooperatives have been purposely omitted, but are available on request.
Andreas Schneider
data("creditcoops") head(creditcoops)
data("creditcoops") head(creditcoops)