
Package: frictionless (via r-universe)
July 18, 2024

Title Read and Write Frictionless Data Packages

Version 1.1.0.9000

Date 2024-03-29

Description Read and write Frictionless Data Packages. A 'Data
Package' (<https://specs.frictionlessdata.io/data-package/>) is
a simple container format and standard to describe and package
a collection of (tabular) data. It is typically used to publish
FAIR (<https://www.go-fair.org/fair-principles/>) and open
datasets.

License MIT + file LICENSE

URL https://github.com/frictionlessdata/frictionless-r,

https://docs.ropensci.org/frictionless/

BugReports https://github.com/frictionlessdata/frictionless-r/issues

Depends R (>= 3.5.0)

Imports cli, dplyr, httr, jsonlite, purrr, readr (>= 2.1.0), rlang,
utils, yaml

Suggests hms, knitr, lubridate, rmarkdown, stringi, testthat (>=
3.0.0), tibble

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Repository https://ropensci.r-universe.dev

RemoteUrl https://github.com/frictionlessdata/frictionless-r

RemoteRef main

RemoteSha 663e31671e0b2816eae7324a0c318be82ad13f3a

1

https://specs.frictionlessdata.io/data-package/
https://www.go-fair.org/fair-principles/
https://github.com/frictionlessdata/frictionless-r
https://docs.ropensci.org/frictionless/
https://github.com/frictionlessdata/frictionless-r/issues

2 add_resource

Contents

add_resource . 2
check_package . 4
create_package . 5
create_schema . 6
example_package . 7
get_schema . 8
print.datapackage . 8
read_package . 9
read_resource . 10
remove_resource . 13
resources . 14
write_package . 15

Index 17

add_resource Add a Data Resource

Description

Adds a Data Resource to a Data Package. The resource will be a Tabular Data Resource. The
resource name can only contain lowercase alphanumeric characters plus ., - and _.

Usage

add_resource(
package,
resource_name,
data,
schema = NULL,
replace = FALSE,
delim = ",",
...

)

Arguments

package Data Package object, as returned by read_package() or create_package().

resource_name Name of the Data Resource.

data Data to attach, either a data frame or path(s) to CSV file(s):

• Data frame: attached to the resource as data and written to a CSV file when
using write_package().

https://specs.frictionlessdata.io/data-resource/
https://specs.frictionlessdata.io/tabular-data-resource/

add_resource 3

• One or more paths to CSV file(s) as a character (vector): added to the re-
source as path. The last file will be read with readr::read_delim() to
create or compare with schema and to set format, mediatype and encoding.
The other files are ignored, but are expected to have the same structure and
properties.

schema Either a list, or path or URL to a JSON file describing a Table Schema for the
data. If not provided, one will be created using create_schema().

replace If TRUE, the added resource will replace an existing resource with the same name.

delim Single character used to separate the fields in the CSV file(s), e.g. \t for tab
delimited file. Will be set as delimiter in the resource CSV dialect, so read
functions know how to read the file(s).

... Additional metadata properties to add to the resource, e.g. title = "My title", validated = FALSE.
These are not verified against specifications and are ignored by read_resource().
The following properties are automatically set and can’t be provided with ...:
name, data, path, schema, profile, format, mediatype, encoding and dialect.

Value

package with one additional resource.

See Also

Other edit functions: remove_resource()

Examples

Load the example Data Package
package <- example_package()

List the resources
resources(package)

Create a data frame
df <- data.frame(

multimedia_id = c(
"aed5fa71-3ed4-4284-a6ba-3550d1a4de8d",
"da81a501-8236-4cbd-aa95-4bc4b10a05df"

),
x = c(718, 748),
y = c(860, 900)

)

Add the resource "positions" from the data frame
package <- add_resource(package, "positions", data = df)

Add the resource "positions_with_schema", with a user-defined schema and title
my_schema <- create_schema(df)
package <- add_resource(

package,
resource_name = "positions_with_schema",

https://specs.frictionlessdata.io/csv-dialect/#specification
https://specs.frictionlessdata.io/data-resource/#metadata-properties

4 check_package

data = df,
schema = my_schema,
title = "Positions with schema"

)

Replace the resource "observations" with a file-based resource (2 CSV files)
path_1 <- system.file("extdata", "observations_1.csv", package = "frictionless")
path_2 <- system.file("extdata", "observations_2.csv", package = "frictionless")
package <- add_resource(

package,
resource_name = "observations",
data = c(path_1, path_2),
replace = TRUE

)

List the resources ("positions" and "positions_with_schema" added)
resources(package)

check_package Check a Data Package object

Description

Check if an object is a Data Package object with the required properties.

Usage

check_package(package)

Arguments

package Data Package object, as returned by read_package() or create_package().

Value

package invisibly or an error.

Examples

Load the example Data Package
package <- example_package()

Check if the Data Package is valid (invisible return)
check_package(package)

create_package 5

create_package Create a Data Package

Description

Initiates a Data Package object, either from scratch or from an existing list. This Data Package
object is a list with the following characteristics:

• A datapackage subclass.

• All properties of the original descriptor.

• A resources property, set to an empty list if undefined.

• A directory property, set to "." for the current directory if undefined. It is used as the base
path to access resources with read_resource().

Usage

create_package(descriptor = NULL)

Arguments

descriptor List to be made into a Data Package object. If undefined, an empty Data Package
will be created from scratch.

Details

The function will run check_package() on the created package to make sure it is valid.

Value

A Data Package object.

See Also

Other create functions: create_schema()

Examples

Create a Data Package
package <- create_package()

package

See the structure of the (empty) Data Package
str(package)

https://specs.frictionlessdata.io/data-package/
https://specs.frictionlessdata.io/data-package/#required-properties

6 create_schema

create_schema Create a Table Schema for a data frame

Description

Creates a Table Schema for a data frame, listing all column names and types as field names and
(converted) types.

Usage

create_schema(data)

Arguments

data A data frame.

Value

List describing a Table Schema.

Table schema properties

The Table Schema will be created from the data frame columns:

• name: contains the column name.

• title: not set.

• description: not set.

• type: contains the converted column type (see further).

• format: not set and can thus be considered default. This is also the case for dates, times
and datetimes, since readr::write_csv() used by write_package() will format those to
ISO8601 which is considered the default. Datetimes in local or non-UTC timezones will be
converted to UTC before writing.

• constraints: not set, except for factors (see further).

• missingValues: not set. write_package() will use the default "" for missing values.

• primaryKey: not set.

• foreignKeys: not set.

Field types:
The column type will determine the field type, as follows:

• character as string.
• Date as date.
• difftime as number.
• factor as string with factor levels as enum.
• hms::hms() as time.

https://specs.frictionlessdata.io/table-schema/
https://specs.frictionlessdata.io/table-schema/#string
https://specs.frictionlessdata.io/table-schema/#date
https://specs.frictionlessdata.io/table-schema/#number
https://specs.frictionlessdata.io/table-schema/#string
https://specs.frictionlessdata.io/table-schema/#time

example_package 7

• integer as integer.
• logical as. boolean.
• numeric as number.
• POSIXct/POSIXlt as datetime.
• Any other type as any.

See Also

Other create functions: create_package()

Examples

Create a data frame
df <- data.frame(

id = c(as.integer(1), as.integer(2)),
timestamp = c(

as.POSIXct("2020-03-01 12:00:00", tz = "EET"),
as.POSIXct("2020-03-01 18:45:00", tz = "EET")

),
life_stage = factor(c("adult", "adult"), levels = c("adult", "juvenile"))

)

Create a Table Schema from the data frame
schema <- create_schema(df)
str(schema)

example_package Read the example Data Package

Description

Reads the example Data Package included in frictionless. This dataset is used in examples,
vignettes, and tests and contains dummy camera trap data organized in 3 Data Resources:

1. deployments: one local data file referenced in "path": "deployments.csv".
2. observations: two local data files referenced in "path": ["observations_1.csv", "observations_2.csv"].
3. media: inline data stored in data.

Usage

example_package()

Value

A Data Package object, see create_package().

Examples

example_package()

https://specs.frictionlessdata.io/table-schema/#integer
https://specs.frictionlessdata.io/table-schema/#boolean
https://specs.frictionlessdata.io/table-schema/#number
https://specs.frictionlessdata.io/table-schema/#datetime
https://specs.frictionlessdata.io/table-schema/#any

8 print.datapackage

get_schema Get the Table Schema of a Data Resource

Description

Returns the Table Schema of a Data Resource (in a Data Package), i.e. the content of its schema
property, describing the resource’s fields, data types, relationships, and missing values. The re-
source must be a Tabular Data Resource.

Usage

get_schema(package, resource_name)

Arguments

package Data Package object, as returned by read_package() or create_package().

resource_name Name of the Data Resource.

Value

List describing a Table Schema.

Examples

Load the example Data Package
package <- example_package()

Get the Table Schema for the resource "observations"
schema <- get_schema(package, "observations")
str(schema)

print.datapackage Print a Data Package

Description

Prints a human-readable summary of a Data Package, including its resources and a link to more
information (if provided in package$id).

Usage

S3 method for class 'datapackage'
print(x, ...)

https://specs.frictionlessdata.io/table-schema/
https://specs.frictionlessdata.io/tabular-data-resource/

read_package 9

Arguments

x Data Package object, created with read_package() or create_package().

... Further arguments, they are ignored by this function.

Value

print() with a summary of the Data Package object.

Examples

Load the example Data Package
package <- example_package()

Print a summary of the Data Package
package # Or print(package)

read_package Read a Data Package descriptor file (datapackage.json)

Description

Reads information from a datapackage.json file, i.e. the descriptor file that describes the Data
Package metadata and its Data Resources.

Usage

read_package(file = "datapackage.json")

Arguments

file Path or URL to a datapackage.json file.

Value

A Data Package object, see create_package().

See Also

Other read functions: read_resource(), resources()

https://specs.frictionlessdata.io/data-package/#descriptor

10 read_resource

Examples

Read a datapackage.json file
package <- read_package(

system.file("extdata", "datapackage.json", package = "frictionless")
)

package

Access the Data Package properties
package$name
package$created

read_resource Read data from a Data Resource into a tibble data frame

Description

Reads data from a Data Resource (in a Data Package) into a tibble (a Tidyverse data frame). The
resource must be a Tabular Data Resource. The function uses readr::read_delim() to read CSV
files, passing the resource properties path, CSV dialect, column names, data types, etc. Column
names are taken from the provided Table Schema (schema), not from the header in the CSV file(s).

Usage

read_resource(package, resource_name, col_select = NULL)

Arguments

package Data Package object, as returned by read_package() or create_package().

resource_name Name of the Data Resource.

col_select Character vector of the columns to include in the result, in the order provided.
Selecting columns can improve read speed.

Value

A tibble::tibble() with the Data Resource’s tabular data. If there are parsing problems, a warn-
ing will alert you. You can retrieve the full details by calling problems() on your data frame.

Resource properties

The Data Resource properties are handled as follows:

Path:
path is required. It can be a local path or URL, which must resolve. Absolute path (/) and relative
parent path (../) are forbidden to avoid security vulnerabilities.
When multiple paths are provided ("path": ["myfile1.csv", "myfile2.csv"]) then data
are merged into a single data frame, in the order in which the paths are listed.

https://specs.frictionlessdata.io/data-resource/
https://specs.frictionlessdata.io/tabular-data-resource/
https://specs.frictionlessdata.io/data-resource/
https://specs.frictionlessdata.io/data-resource/#data-location

read_resource 11

Data:
If path is not present, the function will attempt to read data from the data property. schema will
be ignored.

Name:
name is required. It is used to find the resource with name = resource_name.

Profile:
profile is required to have the value tabular-data-resource.

File encoding:
encoding (e.g. windows-1252) is required if the resource file(s) is not encoded as UTF-8. The
returned data frame will always be UTF-8.

CSV Dialect:
dialect properties are required if the resource file(s) deviate from the default CSV settings (see
below). It can either be a JSON object or a path or URL referencing a JSON object. Only deviating
properties need to be specified, e.g. a tab delimited file without a header row needs:

"dialect": {"delimiter": "\t", "header": "false"}

These are the CSV dialect properties. Some are ignored by the function:

• delimiter: default ,.
• lineTerminator: ignored, line terminator characters LF and CRLF are interpreted automat-

ically by readr::read_delim(), while CR (used by Classic Mac OS, final release 2001) is
not supported.

• doubleQuote: default true.
• quoteChar: default ".
• escapeChar: anything but \ is ignored and it will set doubleQuote to false as these fields

are mutually exclusive. You can thus not escape with \" and "" in the same file.
• nullSequence: ignored, use missingValues.
• skipInitialSpace: default false.
• header: default true.
• commentChar: not set by default.
• caseSensitiveHeader: ignored, header is not used for column names, see Schema.
• csvddfVersion: ignored.

File compression:
Resource file(s) with path ending in .gz, .bz2, .xz, or .zip are automatically decompressed
using default readr::read_delim() functionality. Only .gz files can be read directly from URL
paths. Only the extension in path can be used to indicate compression type, the compression
property is ignored.

Ignored resource properties:
• title

• description

• format

https://specs.frictionlessdata.io/data-resource/#name
https://specs.frictionlessdata.io/tabular-data-resource/#specification
https://specs.frictionlessdata.io/data-resource/#optional-properties
https://specs.frictionlessdata.io/csv-dialect/#specification
https://specs.frictionlessdata.io/patterns/#specification-3

12 read_resource

• mediatype

• bytes

• hash

• sources

• licenses

Table schema properties

schema is required and must follow the Table Schema specification. It can either be a JSON object
or a path or URL referencing a JSON object.

• Field names are used as column headers.

• Field types are use as column types (see further).

• missingValues are used to interpret as NA, with "" as default.

Field types:
Field type is used to set the column type, as follows:

• string as character; or factor when enum is present. format is ignored.
• number as double; or factor when enum is present. Use bareNumber: false to ignore

whitespace and non-numeric characters. decimalChar (. by default) and groupChar (unde-
fined by default) can be defined, but the most occurring value will be used as a global value
for all number fields of that resource.

• integer as double (not integer, to avoid issues with big numbers); or factor when enum is
present. Use bareNumber: false to ignore whitespace and non-numeric characters.

• boolean as logical. Non-default trueValues/falseValues are not supported.
• object as character.
• array as character.
• date as date. Supports format, with values default (ISO date), any (guess ymd) and

Python/C strptime patterns, such as %a, %d %B %Y for Sat, 23 November 2013. %x is
%m/%d/%y. %j, %U, %w and %W are not supported.

• time as hms::hms(). Supports format, with values default (ISO time), any (guess hms)
and Python/C strptime patterns, such as %I%p%M:%S.%f%z for 8AM30:00.300+0200.

• datetime as POSIXct. Supports format, with values default (ISO datetime), any (ISO date-
time) and the same patterns as for date and time. %c is not supported.

• year as date, with 01 for month and day.
• yearmonth as date, with 01 for day.
• duration as character. Can be parsed afterwards with lubridate::duration().
• geopoint as character.
• geojson as character.
• any as character.
• Any other value is not allowed.
• Type is guessed if not provided.

See Also

Other read functions: read_package(), resources()

https://specs.frictionlessdata.io/table-schema/
https://specs.frictionlessdata.io/table-schema/#missing-values
https://specs.frictionlessdata.io/table-schema/#string
https://specs.frictionlessdata.io/table-schema/#number
https://specs.frictionlessdata.io/table-schema/#integer
https://specs.frictionlessdata.io/table-schema/#boolean
https://specs.frictionlessdata.io/table-schema/#object
https://specs.frictionlessdata.io/table-schema/#array
https://specs.frictionlessdata.io/table-schema/#date
https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior
https://specs.frictionlessdata.io/table-schema/#time
https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior
https://specs.frictionlessdata.io/table-schema/#datetime
https://specs.frictionlessdata.io/table-schema/#year
https://specs.frictionlessdata.io/table-schema/#yearmonth
https://specs.frictionlessdata.io/table-schema/#duration
https://specs.frictionlessdata.io/table-schema/#geopoint
https://specs.frictionlessdata.io/table-schema/#geojson
https://specs.frictionlessdata.io/table-schema/#any

remove_resource 13

Examples

Read a datapackage.json file
package <- read_package(

system.file("extdata", "datapackage.json", package = "frictionless")
)

package

Read data from the resource "observations"
read_resource(package, "observations")

The above tibble is merged from 2 files listed in the resource path
package$resources[[2]]$path

The column names and types are derived from the resource schema
purrr::map_chr(package$resources[[2]]$schema$fields, "name")
purrr::map_chr(package$resources[[2]]$schema$fields, "type")

Read data from the resource "deployments" with column selection
read_resource(package, "deployments", col_select = c("latitude", "longitude"))

remove_resource Remove a Data Resource

Description

Removes a Data Resource from a Data Package, i.e. it removes one of the described resources.

Usage

remove_resource(package, resource_name)

Arguments

package Data Package object, as returned by read_package() or create_package().

resource_name Name of the Data Resource.

Value

package with one fewer resource.

See Also

Other edit functions: add_resource()

https://specs.frictionlessdata.io/data-resource/

14 resources

Examples

Load the example Data Package
package <- example_package()

List the resources
resources(package)

Remove the resource "observations"
package <- remove_resource(package, "observations")

List the resources ("observations" removed)
resources(package)

resources List Data Resources

Description

Lists the names of the Data Resources included in a Data Package.

Usage

resources(package)

Arguments

package Data Package object, as returned by read_package() or create_package().

Value

Character vector with the Data Resource names.

See Also

Other read functions: read_package(), read_resource()

Examples

Load the example Data Package
package <- example_package()

List the resources
resources(package)

write_package 15

write_package Write a Data Package to disk

Description

Writes a Data Package and its related Data Resources to disk as a datapackage.json and CSV
files. Already existing CSV files of the same name will not be overwritten. The function can also
be used to download a Data Package in its entirety. The Data Resources are handled as follows:

• Resource path has at least one local path (e.g. deployments.csv): CSV files are copied or
downloaded to directory and path points to new location of file(s).

• Resource path has only URL(s): resource stays as is.

• Resource has inline data originally: resource stays as is.

• Resource has inline data as result of adding data with add_resource(): data are written
to a CSV file using readr::write_csv(), path points to location of file, data property is
removed. Use compress = TRUE to gzip those CSV files.

Usage

write_package(package, directory, compress = FALSE)

Arguments

package Data Package object, as returned by read_package() or create_package().

directory Path to local directory to write files to.

compress If TRUE, data of added resources will be gzip compressed before being written
to disk (e.g. deployments.csv.gz).

Value

package invisibly, as written to file.

Examples

Load the example Data Package from disk
package <- read_package(

system.file("extdata", "datapackage.json", package = "frictionless")
)

package

Write the (unchanged) Data Package to disk
write_package(package, directory = "my_directory")

Check files
list.files("my_directory")

16 write_package

No files written for the "observations" resource, since those are all URLs.
No files written for the "media" resource, since it has inline data.

Clean up (don't do this if you want to keep your files)
unlink("my_directory", recursive = TRUE)

Index

∗ accessor functions
get_schema, 8

∗ check functions
check_package, 4

∗ create functions
create_package, 5
create_schema, 6

∗ edit functions
add_resource, 2
remove_resource, 13

∗ print functions
print.datapackage, 8

∗ read functions
read_package, 9
read_resource, 10
resources, 14

∗ sample data
example_package, 7

∗ write functions
write_package, 15

add_resource, 2, 13

check_package, 4
check_package(), 5
create_package, 5, 7
create_package(), 2, 4, 7–10, 13–15
create_schema, 5, 6
create_schema(), 3

example_package, 7

get_schema, 8

hms::hms(), 6, 12

lubridate::duration(), 12

print(), 9
print.datapackage, 8
problems(), 10

read_package, 9, 12, 14
read_package(), 2, 4, 8–10, 13–15
read_resource, 9, 10, 14
read_resource(), 3, 5
readr::read_delim(), 3, 10, 11
readr::write_csv(), 6, 15
remove_resource, 3, 13
resources, 9, 12, 14

tibble::tibble(), 10

write_package, 15
write_package(), 2, 6

17

	add_resource
	check_package
	create_package
	create_schema
	example_package
	get_schema
	print.datapackage
	read_package
	read_resource
	remove_resource
	resources
	write_package
	Index

