Package 'geojsonio'

Title: Convert Data from and to 'GeoJSON' or 'TopoJSON'
Description: Convert data to 'GeoJSON' or 'TopoJSON' from various R classes, including vectors, lists, data frames, shape files, and spatial classes. 'geojsonio' does not aim to replace packages like 'sp', 'rgdal', 'rgeos', but rather aims to be a high level client to simplify conversions of data from and to 'GeoJSON' and 'TopoJSON'.
Authors: Scott Chamberlain [aut], Andy Teucher [aut], Michael Mahoney [aut, cre]
Maintainer: Michael Mahoney <[email protected]>
License: MIT + file LICENSE
Version: 0.11.3.9000
Built: 2024-12-27 03:13:36 UTC
Source: https://github.com/ropensci/geojsonio

Help Index


Convert inputs to JSON

Description

Convert inputs to JSON

Usage

as.json(x, ...)

Arguments

x

Input

...

Further args passed on to jsonlite::toJSON()

Details

when the output of topojson_list() is given to this function we use a special internal fxn astjl() to parse the object - see that fxn and let us know if any problems you run in to

Examples

## Not run: 
(res <- geojson_list(us_cities[1:2, ], lat = "lat", lon = "long"))
as.json(res)
as.json(res, pretty = TRUE)

vec <- c(-99.74, 32.45)
as.json(geojson_list(vec))
as.json(geojson_list(vec), pretty = TRUE)

## End(Not run)

Convert a path or URL to a location object.

Description

Convert a path or URL to a location object.

Usage

as.location(x, ...)

Arguments

x

Input.

...

Ignored.

Examples

## Not run: 
# A file
file <- system.file("examples", "zillow_or.geojson", package = "geojsonio")
as.location(file)

# A URL
url <- "https://raw.githubusercontent.com/glynnbird/usstatesgeojson/master/california.geojson"
as.location(url)

## End(Not run)

Get bounds for a list or geo_list

Description

Get bounds for a list or geo_list

Usage

bounds(x, ...)

Arguments

x

An object of class list or geo_list

...

Ignored

Value

A vector of the form min longitude, min latitude, max longitude, max latitude

Examples

# numeric
vec <- c(-99.74, 32.45)
x <- geojson_list(vec)
bounds(x)

# list
mylist <- list(
  list(latitude = 30, longitude = 120, marker = "red"),
  list(latitude = 30, longitude = 130, marker = "blue")
)
x <- geojson_list(mylist)
bounds(x)

# data.frame
x <- geojson_list(states[1:20, ])
bounds(x)

This is the same data set from the maps library, named differently

Description

This database is of Canadian cities of population greater than about 1,000. Also included are province capitals of any population size.

Format

A list with 6 components, namely "name", "country.etc", "pop", "lat", "long", and "capital", containing the city name, the province abbreviation, approximate population (as at January 2006), latitude, longitude and capital status indication (0 for non-capital, 1 for capital, 2 for provincial


Get centroid for a geo_list

Description

Get centroid for a geo_list

Usage

centroid(x, ...)

Arguments

x

An object of class geo_list

...

Ignored

Value

A vector of the form longitude, latitude

Examples

# numeric
vec <- c(-99.74, 32.45)
x <- geojson_list(vec)
centroid(x)

# list
mylist <- list(
  list(latitude = 30, longitude = 120, marker = "red"),
  list(latitude = 30, longitude = 130, marker = "blue")
)
x <- geojson_list(mylist)
centroid(x)

# data.frame
x <- geojson_list(states[1:20, ])
centroid(x)

Convert spatial data files to GeoJSON from various formats.

Description

You can use a web interface called Ogre, or do conversions locally using the sf package.

Usage

file_to_geojson(
  input,
  method = "web",
  output = ".",
  parse = FALSE,
  encoding = "CP1250",
  verbose = FALSE,
  ...
)

Arguments

input

The file being uploaded, path to the file on your machine.

method

(character) One of "web" (default) or "local". Matches on partial strings. This parameter determines how the data is read. "web" means we use the Ogre web service, and "local" means we use sf. See Details fore more.

output

Destination for output geojson file. Defaults to current working directory, and gives a random alphanumeric file name

parse

(logical) To parse geojson to data.frame like structures if possible. Default: FALSE

encoding

(character) The encoding passed to sf::st_read(). Default: CP1250

verbose

(logical) Printing of sf::st_read() progress. Default: FALSE

...

Additional parameters passed to st_read

Value

path for the geojson file

Method parameter

The web option uses the Ogre web API. Ogre currently has an output size limit of 15MB. See here http://ogre.adc4gis.com/ for info on the Ogre web API. The local option uses the function st_write from the package rgdal.

Ogre

Note that for Shapefiles, GML, MapInfo, and VRT, you need to send zip files to Ogre. For other file types (.bna, .csv, .dgn, .dxf, .gxt, .txt, .json, .geojson, .rss, .georss, .xml, .gmt, .kml, .kmz) you send the actual file with that file extension.

Linting GeoJSON

If you're having trouble rendering GeoJSON files, ensure you have a valid GeoJSON file by running it through the package geojsonlint, which has a variety of different GeoJSON linters.

File size

When using method="web", be aware of file sizes. https://ogre.adc4gis.com that we use for this option does not document what file size is too large, but you should get an error message like "maximum file length exceeded" when that happens. method="local" shouldn't be sensitive to file sizes.

Examples

## Not run: 
file <- system.file("examples", "norway_maple.kml", package = "geojsonio")

# KML type file - using the web method
file_to_geojson(input = file, method = "web", output = "kml_web")
## read into memory
file_to_geojson(input = file, method = "web", output = ":memory:")
file_to_geojson(input = file, method = "local", output = ":memory:")

# KML type file - using the local method
file_to_geojson(input = file, method = "local", output = "kml_local")

# Shp type file - using the web method - input is a zipped shp bundle
file <- system.file("examples", "bison.zip", package = "geojsonio")
file_to_geojson(file, method = "web", output = "shp_web")

# Shp type file - using the local method - input is the actual .shp file
file <- system.file("examples", "bison.zip", package = "geojsonio")
dir <- tempdir()
unzip(file, exdir = dir)
list.files(dir)
shpfile <- file.path(dir, "bison-Bison_bison-20130704-120856.shp")
file_to_geojson(shpfile, method = "local", output = "shp_local")

# geojson with .json extension
## this doesn't work anymore, hmmm
# x <- gsub("\n", "", paste0('https://gist.githubusercontent.com/hunterowens/
# 25ea24e198c80c9fbcc7/raw/7fd3efda9009f902b5a991a506cea52db19ba143/
# wards2014.json', collapse = ""))
# res <- file_to_geojson(x)
# jsonlite::fromJSON(res)
# res <- file_to_geojson(x, method = "local")
# jsonlite::fromJSON(res)

## End(Not run)

GeoJSON to TopoJSON and back

Description

GeoJSON to TopoJSON and back

Usage

geo2topo(x, object_name = "foo", quantization = 0, ...)

topo2geo(x, ...)

Arguments

x

GeoJSON or TopoJSON as a character string, json, a file path, or url

object_name

(character) name to give to the TopoJSON object created. Default: "foo"

quantization

(numeric) quantization parameter, use this to quantize geometry prior to computing topology. Typical values are powers of ten (1e4, 1e5, ...), default is 0 to not perform quantization. For more information about quantization, see this by Mike Bostock https://stackoverflow.com/questions/18900022/topojson-quantization-vs-simplification/18921214#18921214

...

for geo2topo args passed on to jsonlite::fromJSON(), and for topo2geo args passed on to sf::st_read()

Value

An object of class json, of either GeoJSON or TopoJSON

See Also

topojson_write(), topojson_read()

Examples

# geojson to topojson
x <- '{"type": "LineString", "coordinates": [ [100.0, 0.0], [101.0, 1.0] ]}'
z <- geo2topo(x)
jsonlite::prettify(z)
## Not run: 
library(leaflet)
leaflet() %>%
  addProviderTiles(provider = "Stamen.Terrain") %>%
  addTopoJSON(z)

## End(Not run)

# geojson to topojson as a list
x <- list(
  '{"type": "LineString", "coordinates": [ [100, 0], [101, 1] ]}',
  '{"type": "LineString", "coordinates": [ [110, 0], [110, 1] ]}',
  '{"type": "LineString", "coordinates": [ [120, 0], [121, 1] ]}'
)
geo2topo(x)

# change the object name created
x <- '{"type": "LineString", "coordinates": [ [100.0, 0.0], [101.0, 1.0] ]}'
geo2topo(x, object_name = "HelloWorld")
geo2topo(x, object_name = "4")

x <- list(
  '{"type": "LineString", "coordinates": [ [100, 0], [101, 1] ]}',
  '{"type": "LineString", "coordinates": [ [110, 0], [110, 1] ]}',
  '{"type": "LineString", "coordinates": [ [120, 0], [121, 1] ]}'
)
geo2topo(x, "HelloWorld")
geo2topo(x, c("A", "B", "C"))


# topojson to geojson
w <- topo2geo(z)
jsonlite::prettify(w)

## larger examples
file <- system.file("examples", "us_states.topojson", package = "geojsonio")
topo2geo(file)

Atomize

Description

Atomize

Usage

geojson_atomize(x, combine = TRUE)

Arguments

x

(geo_list/geo_json/json/character) input object, either geo_json, geo_list, json, or character class. If character, must be valid JSON

combine

(logical) only applies to geo_json/json type inputs. combine valid JSON objects into a single valid JSON object. Default: TRUE

Details

A FeatureCollection is split into many Feature's, and a GeometryCollection is split into many geometries

Internally we use jqr for JSON parsing

Value

same class as input object, but modified

Examples

################# lists
# featurecollection -> features
mylist <- list(
  list(latitude = 30, longitude = 120, marker = "red"),
  list(latitude = 30, longitude = 130, marker = "blue")
)
(x <- geojson_list(mylist))
geojson_atomize(x)

# geometrycollection -> geometries
mylist <- list(
  list(latitude = 30, longitude = 120, marker = "red"),
  list(latitude = 30, longitude = 130, marker = "blue")
)
(x <- geojson_list(mylist, type = "GeometryCollection"))
geojson_atomize(x)

# sf class
library(sf)
p1 <- rbind(c(0, 0), c(1, 0), c(3, 2), c(2, 4), c(1, 4), c(0, 0))
poly <- rbind(c(1, 1), c(1, 2), c(2, 2), c(1, 1))
poly_sfg <- st_polygon(list(p1))
(x <- geojson_list(poly_sfg))
geojson_atomize(x)

################# json
# featurecollection -> features
mylist <- list(
  list(latitude = 30, longitude = 120, marker = "red"),
  list(latitude = 30, longitude = 130, marker = "blue")
)
(x <- geojson_json(mylist))
geojson_atomize(x)
geojson_atomize(x, FALSE)

# geometrycollection -> geometries
mylist <- list(
  list(latitude = 30, longitude = 120, marker = "red"),
  list(latitude = 30, longitude = 130, marker = "blue")
)
(x <- geojson_json(mylist, type = "GeometryCollection"))
geojson_atomize(x)
geojson_atomize(x, FALSE)

# sf class
library(sf)
nc <- st_read(system.file("shape/nc.shp", package = "sf"), quiet = TRUE)
(x <- geojson_json(nc))
geojson_atomize(x)
geojson_atomize(x, FALSE)

################# character
# featurecollection -> features
mylist <- list(
  list(latitude = 30, longitude = 120, marker = "red"),
  list(latitude = 30, longitude = 130, marker = "blue")
)
(x <- geojson_json(mylist))
geojson_atomize(unclass(x))

Convert many input types with spatial data to geojson specified as a json string

Description

Convert many input types with spatial data to geojson specified as a json string

Usage

geojson_json(
  input,
  lat = NULL,
  lon = NULL,
  group = NULL,
  geometry = "point",
  type = "FeatureCollection",
  convert_wgs84 = FALSE,
  crs = NULL,
  precision = NULL,
  ...
)

Arguments

input

Input list, data.frame, spatial class, or sf class. Inputs can also be dplyr tbl_df class since it inherits from data.frame.

lat

(character) Latitude name. The default is NULL, and we attempt to guess.

lon

(character) Longitude name. The default is NULL, and we attempt to guess.

group

(character) A grouping variable to perform grouping for polygons - doesn't apply for points

geometry

(character) One of point (Default) or polygon.

type

(character) The type of collection. One of 'auto' (default for 'sf' objects), 'FeatureCollection' (default for everything else), or 'GeometryCollection'. "skip" skips the coercion with package geojson functions; skipping can save significant run time on larger geojson objects. Spatial objects can only accept "FeatureCollection" or "skip". "skip" is not available as an option for numeric, list, and data.frame classes

convert_wgs84

Should the input be converted to the standard CRS system for GeoJSON (https://tools.ietf.org/html/rfc7946) (geographic coordinate reference system, using the WGS84 datum, with longitude and latitude units of decimal degrees; EPSG: 4326). Default is FALSE though this may change in a future package version. This will only work for sf or Spatial objects with a CRS already defined. If one is not defined but you know what it is, you may define it in the crs argument below.

crs

The CRS of the input if it is not already defined. This can be an epsg code as a four or five digit integer or a valid proj4 string. This argument will be ignored if convert_wgs84 is FALSE or the object already has a CRS.

precision

(integer) desired number of decimal places for coordinates. Using fewer decimal places decreases object sizes (at the cost of precision). This changes the underlying precision stored in the data. ⁠options(digits = <some number>)⁠ changes the maximum number of digits displayed (to find out what yours is set at see getOption("digits")); the value of this parameter will change what's displayed in your console up to the value of getOption("digits"). See Precision section for more.

...

Further args passed on to internal functions. For Spatial* classes, it is passed through to sf::st_write(). For sf classes, data.frames, lists, numerics, and geo_lists, it is passed through to jsonlite::toJSON()

Details

This function creates a geojson structure as a json character string; it does not write a file - see geojson_write() for that

Note that all sp class objects will output as FeatureCollection objects, while other classes (numeric, list, data.frame) can be output as FeatureCollection or GeometryCollection objects. We're working on allowing GeometryCollection option for sp class objects.

Also note that with sp classes we do make a round-trip, using sf::st_write() to write GeoJSON to disk, then read it back in. This is fast and we don't have to think about it too much, but this disk round-trip is not ideal.

For sf classes (sf, sfc, sfg), the following conversions are made:

  • sfg: the appropriate geometry ⁠Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, GeometryCollection⁠

  • sfc: GeometryCollection, unless the sfc is length 1, then the geometry as above

  • sf: FeatureCollection

Value

An object of class geo_json (and json)

Precision

Precision is handled in different ways depending on the class.

The digits parameter of jsonlite::toJSON controls precision for classes numeric, list, data.frame, and geo_list.

For sp classes, precision is controlled by sf::st_write, being passed down through geojson_write(), then through internal function write_geojson(), then another internal function write_ogr_sf()

For sf classes, precision isn't quite working yet.

Examples

## Not run: 
# From a numeric vector of length 2, making a point type
geojson_json(c(-99.74134244, 32.451323223))
geojson_json(c(-99.74134244, 32.451323223))[[1]]
geojson_json(c(-99.74134244, 32.451323223), precision = 2)[[1]]
geojson_json(c(-99.74, 32.45), type = "GeometryCollection")

## polygon type
### this requires numeric class input, so inputting a list will dispatch
### on the list method
poly <- c(
  c(-114.345703125, 39.436192999314095),
  c(-114.345703125, 43.45291889355468),
  c(-106.61132812499999, 43.45291889355468),
  c(-106.61132812499999, 39.436192999314095),
  c(-114.345703125, 39.436192999314095)
)
geojson_json(poly, geometry = "polygon")

# Lists
## From a list of numeric vectors to a polygon
vecs <- list(
  c(100.0, 0.0), c(101.0, 0.0), c(101.0, 1.0), c(100.0, 1.0),
  c(100.0, 0.0)
)
geojson_json(vecs, geometry = "polygon")

## from a named list
mylist <- list(
  list(latitude = 30, longitude = 120, marker = "red"),
  list(latitude = 30, longitude = 130, marker = "blue")
)
geojson_json(mylist, lat = "latitude", lon = "longitude")

# From a data.frame to points
geojson_json(us_cities[1:2, ], lat = "lat", lon = "long")
geojson_json(us_cities[1:2, ],
  lat = "lat", lon = "long",
  type = "GeometryCollection"
)

# from data.frame to polygons
head(states)
## make list for input to e.g., rMaps
geojson_json(states[1:351, ],
  lat = "lat", lon = "long", geometry = "polygon",
  group = "group"
)

# from a geo_list
a <- geojson_list(us_cities[1:2, ], lat = "lat", lon = "long")
geojson_json(a)

# sp classes

## From SpatialPolygons class
library("sp")
poly1 <- Polygons(list(Polygon(cbind(
  c(-100, -90, -85, -100),
  c(40, 50, 45, 40)
))), "1")
poly2 <- Polygons(list(Polygon(cbind(
  c(-90, -80, -75, -90),
  c(30, 40, 35, 30)
))), "2")
sp_poly <- SpatialPolygons(list(poly1, poly2), 1:2)
geojson_json(sp_poly)

## data.frame to geojson
geojson_write(us_cities[1:2, ], lat = "lat", lon = "long") %>% as.json()

# From SpatialPoints class
x <- c(1, 2, 3, 4, 5)
y <- c(3, 2, 5, 1, 4)
s <- SpatialPoints(cbind(x, y))
geojson_json(s)

## From SpatialPointsDataFrame class
s <- SpatialPointsDataFrame(cbind(x, y), mtcars[1:5, ])
geojson_json(s)

## From SpatialLines class
library("sp")
c1 <- cbind(c(1, 2, 3), c(3, 2, 2))
c2 <- cbind(c1[, 1] + .05, c1[, 2] + .05)
c3 <- cbind(c(1, 2, 3), c(1, 1.5, 1))
L1 <- Line(c1)
L2 <- Line(c2)
L3 <- Line(c3)
Ls1 <- Lines(list(L1), ID = "a")
Ls2 <- Lines(list(L2, L3), ID = "b")
sl1 <- SpatialLines(list(Ls1))
sl12 <- SpatialLines(list(Ls1, Ls2))
geojson_json(sl1)
geojson_json(sl12)

## From SpatialLinesDataFrame class
dat <- data.frame(
  X = c("Blue", "Green"),
  Y = c("Train", "Plane"),
  Z = c("Road", "River"), row.names = c("a", "b")
)
sldf <- SpatialLinesDataFrame(sl12, dat)
geojson_json(sldf)
geojson_json(sldf)

## From SpatialGrid
x <- GridTopology(c(0, 0), c(1, 1), c(5, 5))
y <- SpatialGrid(x)
geojson_json(y)

## From SpatialGridDataFrame
sgdim <- c(3, 4)
sg <- SpatialGrid(GridTopology(rep(0, 2), rep(10, 2), sgdim))
sgdf <- SpatialGridDataFrame(sg, data.frame(val = 1:12))
geojson_json(sgdf)

# From SpatialPixels
library("sp")
pixels <- suppressWarnings(
  SpatialPixels(SpatialPoints(us_cities[c("long", "lat")]))
)
summary(pixels)
geojson_json(pixels)

# From SpatialPixelsDataFrame
library("sp")
pixelsdf <- suppressWarnings(
  SpatialPixelsDataFrame(
    points = canada_cities[c("long", "lat")],
    data = canada_cities
  )
)
geojson_json(pixelsdf)

# From sf classes:
if (require(sf)) {
  ## sfg (a single simple features geometry)
  p1 <- rbind(c(0, 0), c(1, 0), c(3, 2), c(2, 4), c(1, 4), c(0, 0))
  poly <- rbind(c(1, 1), c(1, 2), c(2, 2), c(1, 1))
  poly_sfg <- st_polygon(list(p1))
  geojson_json(poly_sfg)

  ## sfc (a collection of geometries)
  p1 <- rbind(c(0, 0), c(1, 0), c(3, 2), c(2, 4), c(1, 4), c(0, 0))
  p2 <- rbind(c(5, 5), c(5, 6), c(4, 5), c(5, 5))
  poly_sfc <- st_sfc(st_polygon(list(p1)), st_polygon(list(p2)))
  geojson_json(poly_sfc)

  ## sf (collection of geometries with attributes)
  p1 <- rbind(c(0, 0), c(1, 0), c(3, 2), c(2, 4), c(1, 4), c(0, 0))
  p2 <- rbind(c(5, 5), c(5, 6), c(4, 5), c(5, 5))
  poly_sfc <- st_sfc(st_polygon(list(p1)), st_polygon(list(p2)))
  poly_sf <- st_sf(foo = c("a", "b"), bar = 1:2, poly_sfc)
  geojson_json(poly_sf)
}

## Pretty print a json string
geojson_json(c(-99.74, 32.45))
geojson_json(c(-99.74, 32.45)) %>% pretty()

# skipping the pretty geojson class coercion with the geojson pkg
if (require(sf)) {
  library(sf)
  p1 <- rbind(c(0, 0), c(1, 0), c(3, 2), c(2, 4), c(1, 4), c(0, 0))
  p2 <- rbind(c(5, 5), c(5, 6), c(4, 5), c(5, 5))
  poly_sfc <- st_sfc(st_polygon(list(p1)), st_polygon(list(p2)))
  geojson_json(poly_sfc)
  geojson_json(poly_sfc, type = "skip")
}

## End(Not run)

Convert many input types with spatial data to geojson specified as a list

Description

Convert many input types with spatial data to geojson specified as a list

Usage

geojson_list(
  input,
  lat = NULL,
  lon = NULL,
  group = NULL,
  geometry = "point",
  type = "FeatureCollection",
  convert_wgs84 = FALSE,
  crs = NULL,
  precision = NULL,
  ...
)

Arguments

input

Input list, data.frame, spatial class, or sf class. Inputs can also be dplyr tbl_df class since it inherits from data.frame

lat

(character) Latitude name. The default is NULL, and we attempt to guess.

lon

(character) Longitude name. The default is NULL, and we attempt to guess.

group

(character) A grouping variable to perform grouping for polygons - doesn't apply for points

geometry

(character) One of point (Default) or polygon.

type

(character) The type of collection. One of FeatureCollection (default) or GeometryCollection.

convert_wgs84

Should the input be converted to the standard CRS for GeoJSON (https://tools.ietf.org/html/rfc7946) (geographic coordinate reference system, using the WGS84 datum, with longitude and latitude units of decimal degrees; EPSG: 4326). Default is FALSE though this may change in a future package version. This will only work for sf or Spatial objects with a CRS already defined. If one is not defined but you know what it is, you may define it in the crs argument below.

crs

The CRS of the input if it is not already defined. This can be an epsg code as a four or five digit integer or a valid proj4 string. This argument will be ignored if convert_wgs84 is FALSE or the object already has a CRS.

precision

(integer) desired number of decimal places for coordinates. Only used with classes from sp classes; ignored for other classes. Using fewer decimal places decreases object sizes (at the cost of precision). This changes the underlying precision stored in the data. ⁠options(digits = <some number>)⁠ changes the maximum number of digits displayed (to find out what yours is set at see getOption("digits")); the value of this parameter will change what's displayed in your console up to the value of getOption("digits")

...

Ignored

Details

This function creates a geojson structure as an R list; it does not write a file - see geojson_write() for that.

Note that all sp class objects will output as FeatureCollection objects, while other classes (numeric, list, data.frame) can be output as FeatureCollection or GeometryCollection objects. We're working on allowing GeometryCollection option for sp class objects.

Also note that with sp classes we do make a round-trip, using sf::st_write() to write GeoJSON to disk, then read it back in. This is fast and we don't have to think about it too much, but this disk round-trip is not ideal.

For sf classes (sf, sfc, sfg), the following conversions are made:

  • sfg: the appropriate geometry ⁠Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, GeometryCollection⁠

  • sfc: GeometryCollection, unless the sfc is length 1, then the geometry as above

  • sf: FeatureCollection

For list and data.frame objects, you don't have to pass in lat and lon parameters if they are named appropriately (e.g., lat/latitude, lon/long/longitude), as they will be auto-detected. If they can not be found, the function will stop and warn you to specify the parameters specifically.

Examples

## Not run: 
# From a numeric vector of length 2 to a point
vec <- c(-99.74, 32.45)
geojson_list(vec)

# Lists
## From a list
mylist <- list(
  list(latitude = 30, longitude = 120, marker = "red"),
  list(latitude = 30, longitude = 130, marker = "blue")
)
geojson_list(mylist)

## From a list of numeric vectors to a polygon
vecs <- list(
  c(100.0, 0.0), c(101.0, 0.0), c(101.0, 1.0),
  c(100.0, 1.0), c(100.0, 0.0)
)
geojson_list(vecs, geometry = "polygon")

# from data.frame to points
(res <- geojson_list(us_cities[1:2, ], lat = "lat", lon = "long"))
as.json(res)
## guess lat/long columns
geojson_list(us_cities[1:2, ])
geojson_list(states[1:3, ])
geojson_list(states[1:351, ], geometry = "polygon", group = "group")
geojson_list(canada_cities[1:30, ])
## a data.frame with columsn not named appropriately, but you can
## specify them
# dat <- data.frame(a = c(31, 41), b = c(-120, -110))
# geojson_list(dat)
# geojson_list(dat, lat="a", lon="b")

# from data.frame to polygons
head(states)
geojson_list(states[1:351, ],
  lat = "lat", lon = "long",
  geometry = "polygon", group = "group"
)

# From SpatialPolygons class
library("sp")
poly1 <- Polygons(list(Polygon(cbind(
  c(-100, -90, -85, -100),
  c(40, 50, 45, 40)
))), "1")
poly2 <- Polygons(list(Polygon(cbind(
  c(-90, -80, -75, -90),
  c(30, 40, 35, 30)
))), "2")
sp_poly <- SpatialPolygons(list(poly1, poly2), 1:2)
geojson_list(sp_poly)

# From SpatialPolygons class with precision agreement
x_coord <- c(
  -114.345703125, -114.345703125, -106.61132812499999,
  -106.61132812499999, -114.345703125
)
y_coord <- c(
  39.436192999314095, 43.45291889355468, 43.45291889355468,
  39.436192999314095, 39.436192999314095
)
coords <- cbind(x_coord, y_coord)
poly <- Polygon(coords)
polys <- Polygons(list(poly), 1)
sp_poly2 <- SpatialPolygons(list(polys))
geojson_list(sp_poly2, geometry = "polygon", precision = 4)
geojson_list(sp_poly2, geometry = "polygon", precision = 3)
geojson_list(sp_poly2, geometry = "polygon", precision = 2)

# From SpatialPoints class with precision
points <- SpatialPoints(cbind(x_coord, y_coord))
geojson_list(points)

# From SpatialPolygonsDataFrame class
sp_polydf <- as(sp_poly, "SpatialPolygonsDataFrame")
geojson_list(input = sp_polydf)

# From SpatialPoints class
x <- c(1, 2, 3, 4, 5)
y <- c(3, 2, 5, 1, 4)
s <- SpatialPoints(cbind(x, y))
geojson_list(s)

# From SpatialPointsDataFrame class
s <- SpatialPointsDataFrame(cbind(x, y), mtcars[1:5, ])
geojson_list(s)

# From SpatialLines class
library("sp")
c1 <- cbind(c(1, 2, 3), c(3, 2, 2))
c2 <- cbind(c1[, 1] + .05, c1[, 2] + .05)
c3 <- cbind(c(1, 2, 3), c(1, 1.5, 1))
L1 <- Line(c1)
L2 <- Line(c2)
L3 <- Line(c3)
Ls1 <- Lines(list(L1), ID = "a")
Ls2 <- Lines(list(L2, L3), ID = "b")
sl1 <- SpatialLines(list(Ls1))
sl12 <- SpatialLines(list(Ls1, Ls2))
geojson_list(sl1)
geojson_list(sl12)
as.json(geojson_list(sl12))
as.json(geojson_list(sl12), pretty = TRUE)

# From SpatialLinesDataFrame class
dat <- data.frame(
  X = c("Blue", "Green"),
  Y = c("Train", "Plane"),
  Z = c("Road", "River"), row.names = c("a", "b")
)
sldf <- SpatialLinesDataFrame(sl12, dat)
geojson_list(sldf)
as.json(geojson_list(sldf))
as.json(geojson_list(sldf), pretty = TRUE)

# From SpatialGrid
x <- GridTopology(c(0, 0), c(1, 1), c(5, 5))
y <- SpatialGrid(x)
geojson_list(y)

# From SpatialGridDataFrame
sgdim <- c(3, 4)
sg <- SpatialGrid(GridTopology(rep(0, 2), rep(10, 2), sgdim))
sgdf <- SpatialGridDataFrame(sg, data.frame(val = 1:12))
geojson_list(sgdf)

# From SpatialPixels
library("sp")
pixels <- suppressWarnings(
  SpatialPixels(SpatialPoints(us_cities[c("long", "lat")]))
)
summary(pixels)
geojson_list(pixels)

# From SpatialPixelsDataFrame
library("sp")
pixelsdf <- suppressWarnings(
  SpatialPixelsDataFrame(
    points = canada_cities[c("long", "lat")],
    data = canada_cities
  )
)
geojson_list(pixelsdf)

# From sf classes:
if (require(sf)) {
  ## sfg (a single simple features geometry)
  p1 <- rbind(c(0, 0), c(1, 0), c(3, 2), c(2, 4), c(1, 4), c(0, 0))
  poly <- rbind(c(1, 1), c(1, 2), c(2, 2), c(1, 1))
  poly_sfg <- st_polygon(list(p1))
  geojson_list(poly_sfg)

  ## sfc (a collection of geometries)
  p1 <- rbind(c(0, 0), c(1, 0), c(3, 2), c(2, 4), c(1, 4), c(0, 0))
  p2 <- rbind(c(5, 5), c(5, 6), c(4, 5), c(5, 5))
  poly_sfc <- st_sfc(st_polygon(list(p1)), st_polygon(list(p2)))
  geojson_list(poly_sfc)

  ## sf (collection of geometries with attributes)
  p1 <- rbind(c(0, 0), c(1, 0), c(3, 2), c(2, 4), c(1, 4), c(0, 0))
  p2 <- rbind(c(5, 5), c(5, 6), c(4, 5), c(5, 5))
  poly_sfc <- st_sfc(st_polygon(list(p1)), st_polygon(list(p2)))
  poly_sf <- st_sf(foo = c("a", "b"), bar = 1:2, poly_sfc)
  geojson_list(poly_sf)
}

## End(Not run)

Read geojson or other formats from a local file or a URL

Description

Read geojson or other formats from a local file or a URL

Usage

geojson_read(
  x,
  parse = FALSE,
  what = "list",
  stringsAsFactors = FALSE,
  query = NULL,
  ...
)

Arguments

x

(character) Path to a local file or a URL.

parse

(logical) To parse geojson to data.frame like structures if possible. Default: FALSE

what

(character) What to return. One of "list", "sp" (for Spatial class), or "json". Default: "list". "list" "and" sp run through package sf. if "json", returns json as character class

stringsAsFactors

Convert strings to Factors? Default FALSE.

query

(character) A SQL query, see also postgis

...

Further args passed on to sf::st_read()

Details

This function supports various geospatial file formats from a URL, as well as local kml, shp, and geojson file formats.

Value

various, depending on what's chosen in what parameter

  • list: geojson as a list using jsonlite::fromJSON()

  • sp: geojson as an sp class object using sf::st_read()

  • json: geojson as character string, to parse downstream as you wish

File size

We previously used file_to_geojson() in this function, leading to file size problems; this should no longer be a concern, but let us know if you run into file size problems

See Also

topojson_read(), geojson_write() postgis

Examples

## Not run: 
# From a file
file <- system.file("examples", "california.geojson", package = "geojsonio")
(out <- geojson_read(file))
geojson_read(file)

# From a URL
url <- "https://raw.githubusercontent.com/glynnbird/usstatesgeojson/master/california.geojson"
geojson_read(url)
geojson_read(url, parse = TRUE)

# Use as.location first if you want
geojson_read(as.location(file))

# output a SpatialClass object
## read kml
file <- system.file("examples", "norway_maple.kml", package = "geojsonio")
geojson_read(as.location(file), what = "sp")
## read geojson
file <- system.file("examples", "california.geojson", package = "geojsonio")
geojson_read(as.location(file), what = "sp")
## read geojson from a url
url <- "https://raw.githubusercontent.com/glynnbird/usstatesgeojson/master/california.geojson"
geojson_read(url, what = "sp")
## read from a shape file
file <- system.file("examples", "bison.zip", package = "geojsonio")
dir <- tempdir()
unzip(file, exdir = dir)
shpfile <- list.files(dir, pattern = ".shp", full.names = TRUE)
geojson_read(shpfile, what = "sp")

x <- "https://raw.githubusercontent.com/johan/world.geo.json/master/countries.geo.json"
geojson_read(x, what = "sp")
geojson_read(x, what = "list")

utils::download.file(x, destfile = basename(x))
geojson_read(basename(x), what = "sp")

# from a Postgres database - your Postgres instance must be running
## MAKE SURE to run the setup in the postgis manual file first!
if (requireNamespace("DBI") && requireNamespace("RPostgres")) {
  library(DBI)
  conn <- tryCatch(dbConnect(RPostgres::Postgres(), dbname = "postgistest"),
    error = function(e) e
  )
  if (inherits(conn, "PqConnection")) {
    state <- "SELECT row_to_json(fc)
   FROM (SELECT 'FeatureCollection' As type, array_to_json(array_agg(f)) As features
   FROM (SELECT 'Feature' As type
     , ST_AsGeoJSON(lg.geog)::json As geometry
     , row_to_json((SELECT l FROM (SELECT loc_id, loc_name) As l
       )) As properties
    FROM locations As lg   ) As f )  As fc;"
    json <- geojson_read(conn, query = state, what = "json")
    map_leaf(json)
  }
}

## End(Not run)

Convert objects to an sf class

Description

Convert objects to an sf class

Usage

geojson_sf(x, stringsAsFactors = FALSE, ...)

Arguments

x

Object of class geo_list, geo_json, string, or json

stringsAsFactors

Convert strings to Factors? Default FALSE.

...

Further args passed on to sf::st_read()

Details

The type of sf object returned will depend on the input GeoJSON. Sometimes you will get back a POINTS class, and sometimes a POLYGON class, etc., depending on what the structure of the GeoJSON.

The reading and writing of the CRS to/from geojson is inconsistent. You can directly set the CRS by passing a valid PROJ4 string or epsg code to the crs argument in sf::st_read()

Value

An sf class object, see Details.

Examples

## Not run: 
library(sf)

# geo_list ------------------
## From a numeric vector of length 2 to a point
vec <- c(-99.74, 32.45)
geojson_list(vec) %>% geojson_sf()

## Lists
## From a list
mylist <- list(
  list(latitude = 30, longitude = 120, marker = "red"),
  list(latitude = 30, longitude = 130, marker = "blue")
)
geojson_list(mylist) %>% geojson_sf()
geojson_list(mylist) %>%
  geojson_sf() %>%
  plot()

## From a list of numeric vectors to a polygon
vecs <- list(c(100.0, 0.0), c(101.0, 0.0), c(101.0, 1.0), c(100.0, 1.0), c(100.0, 0.0))
geojson_list(vecs, geometry = "polygon") %>% geojson_sf()
geojson_list(vecs, geometry = "polygon") %>%
  geojson_sf() %>%
  plot()

# geo_json ------------------
## from point
geojson_json(c(-99.74, 32.45)) %>% geojson_sf()
geojson_json(c(-99.74, 32.45)) %>%
  geojson_sf() %>%
  plot()

# from featurecollectino of points
geojson_json(us_cities[1:2, ], lat = "lat", lon = "long") %>% geojson_sf()
geojson_json(us_cities[1:2, ], lat = "lat", lon = "long") %>%
  geojson_sf() %>%
  plot()

# Set the CRS via the crs argument
geojson_json(us_cities[1:2, ], lat = "lat", lon = "long") %>% geojson_sf(crs = "+init=epsg:4326")

# json ----------------------
x <- geojson_json(us_cities[1:2, ], lat = "lat", lon = "long")
geojson_sf(x)

# character string ----------------------
x <- unclass(geojson_json(c(-99.74, 32.45)))
geojson_sf(x)

## End(Not run)

Convert objects to spatial classes

Description

Convert objects to spatial classes

Usage

geojson_sp(x, disambiguateFIDs = FALSE, stringsAsFactors = FALSE, ...)

Arguments

x

Object of class geo_list, geo_json, string, or json

disambiguateFIDs

Ignored, and will be removed in a future version. Previously was passed to rgdal::readOGR(), which is no longer used.

stringsAsFactors

Convert strings to Factors? Default FALSE.

...

Further args passed on to sf::st_read()

Details

The spatial class object returned will depend on the input GeoJSON. Sometimes you will get back a SpatialPoints class, and sometimes a SpatialPolygonsDataFrame class, etc., depending on what the structure of the GeoJSON.

The reading and writing of the CRS to/from geojson is inconsistent. You can directly set the CRS by passing a valid PROJ4 string or epsg code to the crs argument in sf::st_read()

Value

A spatial class object, see Details.

Examples

## Not run: 
library(sp)

# geo_list ------------------
## From a numeric vector of length 2 to a point
vec <- c(-99.74, 32.45)
geojson_list(vec) %>% geojson_sp()

## Lists
## From a list
mylist <- list(
  list(latitude = 30, longitude = 120, marker = "red"),
  list(latitude = 30, longitude = 130, marker = "blue")
)
geojson_list(mylist) %>% geojson_sp()
geojson_list(mylist) %>%
  geojson_sp() %>%
  plot()

## From a list of numeric vectors to a polygon
vecs <- list(c(100.0, 0.0), c(101.0, 0.0), c(101.0, 1.0), c(100.0, 1.0), c(100.0, 0.0))
geojson_list(vecs, geometry = "polygon") %>% geojson_sp()
geojson_list(vecs, geometry = "polygon") %>%
  geojson_sp() %>%
  plot()

# geo_json ------------------
## from point
geojson_json(c(-99.74, 32.45)) %>% geojson_sp()
geojson_json(c(-99.74, 32.45)) %>%
  geojson_sp() %>%
  plot()

# from featurecollectino of points
geojson_json(us_cities[1:2, ], lat = "lat", lon = "long") %>% geojson_sp()
geojson_json(us_cities[1:2, ], lat = "lat", lon = "long") %>%
  geojson_sp() %>%
  plot()

# Set the CRS via the crs argument
geojson_json(us_cities[1:2, ], lat = "lat", lon = "long") %>%
  geojson_sp(crs = "+init=epsg:4326")

# json ----------------------
x <- geojson_json(us_cities[1:2, ], lat = "lat", lon = "long")
geojson_sp(x)

# character string ----------------------
x <- unclass(geojson_json(c(-99.74, 32.45)))
geojson_sp(x)

## End(Not run)

Style a data.frame or list prior to converting to geojson

Description

This helps you add styling following the Simplestyle Spec. See Details

Usage

geojson_style(
  input,
  var = NULL,
  var_col = NULL,
  var_sym = NULL,
  var_size = NULL,
  var_stroke = NULL,
  var_stroke_width = NULL,
  var_stroke_opacity = NULL,
  var_fill = NULL,
  var_fill_opacity = NULL,
  color = NULL,
  symbol = NULL,
  size = NULL,
  stroke = NULL,
  stroke_width = NULL,
  stroke_opacity = NULL,
  fill = NULL,
  fill_opacity = NULL
)

Arguments

input

A data.frame or a list

var

(character) A single variable to map colors, symbols, and/or sizes to

var_col

(character) A single variable to map colors to.

var_sym

(character) A single variable to map symbols to.

var_size

(character) A single variable to map size to.

var_stroke

(character) A single variable to map stroke to.

var_stroke_width

(character) A single variable to map stroke width to.

var_stroke_opacity

(character) A single variable to map stroke opacity to.

var_fill

(character) A single variable to map fill to.

var_fill_opacity

(character) A single variable to map fill opacity to

color

(character) Valid RGB hex color. Assigned to the variable marker-color

symbol

(character) An icon ID from the Maki project https://labs.mapbox.com/maki-icons/ or a single alphanumeric character (a-z or 0-9). Assigned to the variable marker-symbol

size

(character) One of 'small', 'medium', or 'large'. Assigned to the variable marker-size

stroke

(character) Color of a polygon edge or line (RGB). Assigned to the variable stroke

stroke_width

(numeric) Width of a polygon edge or line (number > 0). Assigned to the variable stroke-width

stroke_opacity

(numeric) Opacity of a polygon edge or line (0.0 - 1.0). Assigned to the variable stroke-opacity

fill

(character) The color of the interior of a polygon (GRB). Assigned to the variable fill

fill_opacity

(character) The opacity of the interior of a polygon (0.0-1.0). Assigned to the variable fill-opacity

Details

The parameters color, symbol, size, stroke, stroke_width, stroke_opacity, fill, and fill_opacity expect a vector of size 1 (recycled), or exact length of vector being applied to in your input data.

This function helps add styling data to a list or data.frame following the Simplestyle Spec (https://github.com/mapbox/simplestyle-spec/tree/master/1.1.0), used by MapBox and GitHub Gists (that renders geoJSON/topoJSON as interactive maps).

There are a few other style variables, but deal with polygons

GitHub has a nice help article on geoJSON files https://help.github.com/articles/mapping-geojson-files-on-github/

Please do get in touch if you think anything should change in this function.

Examples

## Not run: 
## from data.frames - point data
library("RColorBrewer")
smalluscities <-
  subset(us_cities, country.etc == "OR" | country.etc == "NY" | country.etc == "CA")

### Just color
geojson_style(smalluscities,
  var = "country.etc",
  color = brewer.pal(length(unique(smalluscities$country.etc)), "Blues")
)
### Just size
geojson_style(smalluscities, var = "country.etc", size = c("small", "medium", "large"))
### Color and size
geojson_style(smalluscities,
  var = "country.etc",
  color = brewer.pal(length(unique(smalluscities$country.etc)), "Blues"),
  size = c("small", "medium", "large")
)

## from lists - point data
mylist <- list(
  list(latitude = 30, longitude = 120, state = "US"),
  list(latitude = 32, longitude = 130, state = "OR"),
  list(latitude = 38, longitude = 125, state = "NY"),
  list(latitude = 40, longitude = 128, state = "VT")
)
# just color
geojson_style(mylist,
  var = "state",
  color = brewer.pal(length(unique(sapply(mylist, "[[", "state"))), "Blues")
)
# color and size
geojson_style(mylist,
  var = "state",
  color = brewer.pal(length(unique(sapply(mylist, "[[", "state"))), "Blues"),
  size = c("small", "medium", "large", "large")
)
# color, size, and symbol
geojson_style(mylist,
  var = "state",
  color = brewer.pal(length(unique(sapply(mylist, "[[", "state"))), "Blues"),
  size = c("small", "medium", "large", "large"),
  symbol = "zoo"
)
# stroke, fill
geojson_style(mylist,
  var = "state",
  stroke = brewer.pal(length(unique(sapply(mylist, "[[", "state"))), "Blues"),
  fill = brewer.pal(length(unique(sapply(mylist, "[[", "state"))), "Greens")
)

# from data.frame - polygon data
smallstates <- states[states$group %in% 1:3, ]
head(smallstates)
geojson_style(smallstates,
  var = "group",
  stroke = brewer.pal(length(unique(smallstates$group)), "Blues"),
  stroke_width = c(1, 2, 3),
  fill = brewer.pal(length(unique(smallstates$group)), "Greens")
)

## End(Not run)

Convert many input types with spatial data to a geojson file

Description

Convert many input types with spatial data to a geojson file

Usage

geojson_write(
  input,
  lat = NULL,
  lon = NULL,
  geometry = "point",
  group = NULL,
  file = "myfile.geojson",
  overwrite = TRUE,
  precision = NULL,
  convert_wgs84 = FALSE,
  crs = NULL,
  ...
)

Arguments

input

Input list, data.frame, spatial class, or sf class. Inputs can also be dplyr tbl_df class since it inherits from data.frame

lat

(character) Latitude name. The default is NULL, and we attempt to guess.

lon

(character) Longitude name. The default is NULL, and we attempt to guess.

geometry

(character) One of point (Default) or polygon.

group

(character) A grouping variable to perform grouping for polygons - doesn't apply for points

file

(character) A path and file name (e.g., myfile), with the .geojson file extension. Default writes to current working directory.

overwrite

(logical) Overwrite the file given in file with input. Default: TRUE. If this param is FALSE and the file already exists, we stop with error message.

precision

desired number of decimal places for the coordinates in the geojson file. Using fewer decimal places can decrease file sizes (at the cost of precision).

convert_wgs84

Should the input be converted to the standard CRS for GeoJSON (https://tools.ietf.org/html/rfc7946) (geographic coordinate reference system, using the WGS84 datum, with longitude and latitude units of decimal degrees; EPSG: 4326). Default is FALSE though this may change in a future package version. This will only work for sf or Spatial objects with a CRS already defined. If one is not defined but you know what it is, you may define it in the crs argument below.

crs

The CRS of the input if it is not already defined. This can be an epsg code as a four or five digit integer or a valid proj4 string. This argument will be ignored if convert_wgs84 is FALSE or the object already has a CRS.

...

Further args passed on to internal functions. For Spatial* classes, data.frames, regular lists, and numerics, it is passed through to sf::st_write(). For sf classes, geo_lists and json classes, it is passed through to jsonlite::toJSON().

Value

A geojson_write class, with two elements:

  • path: path to the file with the GeoJSON

  • type: type of object the GeoJSON came from, e.g., SpatialPoints

See Also

geojson_list(), geojson_json(), topojson_write()

Examples

## Not run: 
# From a data.frame
## to points
geojson_write(us_cities[1:2, ], lat = "lat", lon = "long")

## to polygons
head(states)
geojson_write(
  input = states, lat = "lat", lon = "long",
  geometry = "polygon", group = "group"
)

## partial states dataset to points (defaults to points)
geojson_write(input = states, lat = "lat", lon = "long")

## Lists
### list of numeric pairs
poly <- list(
  c(-114.345703125, 39.436192999314095),
  c(-114.345703125, 43.45291889355468),
  c(-106.61132812499999, 43.45291889355468),
  c(-106.61132812499999, 39.436192999314095),
  c(-114.345703125, 39.436192999314095)
)
geojson_write(poly, geometry = "polygon")

### named list
mylist <- list(
  list(latitude = 30, longitude = 120, marker = "red"),
  list(latitude = 30, longitude = 130, marker = "blue")
)
geojson_write(mylist)

# From a numeric vector of length 2
## Expected order is lon, lat
vec <- c(-99.74, 32.45)
geojson_write(vec)

## polygon from a series of numeric pairs
### this requires numeric class input, so inputting a list will
### dispatch on the list method
poly <- c(
  c(-114.345703125, 39.436192999314095),
  c(-114.345703125, 43.45291889355468),
  c(-106.61132812499999, 43.45291889355468),
  c(-106.61132812499999, 39.436192999314095),
  c(-114.345703125, 39.436192999314095)
)
geojson_write(poly, geometry = "polygon")

# Write output of geojson_list to file
res <- geojson_list(us_cities[1:2, ], lat = "lat", lon = "long")
class(res)
geojson_write(res)

# Write output of geojson_json to file
res <- geojson_json(us_cities[1:2, ], lat = "lat", lon = "long")
class(res)
geojson_write(res)

# From SpatialPolygons class
library("sp")
poly1 <- Polygons(list(Polygon(cbind(
  c(-100, -90, -85, -100),
  c(40, 50, 45, 40)
))), "1")
poly2 <- Polygons(list(Polygon(cbind(
  c(-90, -80, -75, -90),
  c(30, 40, 35, 30)
))), "2")
sp_poly <- SpatialPolygons(list(poly1, poly2), 1:2)
geojson_write(sp_poly)

# From SpatialPolygonsDataFrame class
sp_polydf <- as(sp_poly, "SpatialPolygonsDataFrame")
geojson_write(input = sp_polydf)

# From SpatialGrid
x <- GridTopology(c(0, 0), c(1, 1), c(5, 5))
y <- SpatialGrid(x)
geojson_write(y)

# From SpatialGridDataFrame
sgdim <- c(3, 4)
sg <- SpatialGrid(GridTopology(rep(0, 2), rep(10, 2), sgdim))
sgdf <- SpatialGridDataFrame(sg, data.frame(val = 1:12))
geojson_write(sgdf)


# From SpatialPixels
library("sp")
pixels <- suppressWarnings(SpatialPixels(SpatialPoints(us_cities[c("long", "lat")])))
summary(pixels)
geojson_write(pixels)

# From SpatialPixelsDataFrame
library("sp")
pixelsdf <- suppressWarnings(
  SpatialPixelsDataFrame(points = canada_cities[c("long", "lat")], data = canada_cities)
)
geojson_write(pixelsdf)


# From sf classes:
if (require(sf)) {
  file <- system.file("examples", "feature_collection.geojson", package = "geojsonio")
  sf_fc <- st_read(file, quiet = TRUE)
  geojson_write(sf_fc)
}

## End(Not run)

Add together geo_list or json objects

Description

Add together geo_list or json objects

Usage

## S3 method for class 'geo_list'
x1 + x2

## S3 method for class 'json'
x1 + x2

Arguments

x1

An object of class geo_list or json

x2

A component to add to x1, of class geo_list or json

Details

If the first object is an object of class geo_list, you can add another object of class geo_list or of class json, and will result in a geo_list object.

If the first object is an object of class json, you can add another object of class json or of class geo_list, and will result in a json object.

See Also

geojson_list(), geojson_json()

Examples

## Not run: 
# geo_list + geo_list
## Note: geo_list is the output type from geojson_list, it's just a list with
## a class attached so we know it's geojson :)
vec <- c(-99.74, 32.45)
a <- geojson_list(vec)
vecs <- list(
  c(100.0, 0.0), c(101.0, 0.0), c(101.0, 1.0),
  c(100.0, 1.0), c(100.0, 0.0)
)
b <- geojson_list(vecs, geometry = "polygon")
a + b

# json + json
c <- geojson_json(c(-99.74, 32.45))
vecs <- list(
  c(100.0, 0.0), c(101.0, 0.0), c(101.0, 1.0),
  c(100.0, 1.0), c(100.0, 0.0)
)
d <- geojson_json(vecs, geometry = "polygon")
c + d
(c + d) %>% pretty()

## End(Not run)

I/O for GeoJSON

Description

Convert various data formats to/from GeoJSON or TopoJSON. This package focuses mostly on converting lists, data.frame's, numeric, SpatialPolygons, SpatialPolygonsDataFrame, and more to GeoJSON with the help of sf. You can currently read TopoJSON - writing TopoJSON will come in a future version of this package.

Package organization

The core functions in this package are organized first around what you're working with or want to get, GeoJSON or TopoJSON, then convert to or read from various formats:

Other interesting functions:

  • map_gist() - Create a GitHub gist (renders as an interactive map)

  • map_leaf() - Create a local interactive map using the leaflet package

  • geo2topo() - Convert GeoJSON to TopoJSON

  • topo2geo() - Convert TopoJSON to GeoJSON

All of the above functions have methods for various classes, including numeric vectors, data.frame, list, SpatialPolygons, SpatialLines, SpatialPoints, and many more - which will try to do the right thing based on the data you give as input.

Author(s)

Scott Chamberlain

Andy Teucher [email protected]

Michael Mahoney [email protected]

See Also

Useful links:


Publish an interactive map as a GitHub gist

Description

There are two ways to authorize to work with your GitHub account:

  • PAT - Generate a personal access token (PAT) at https://help.github.com/articles/creating-an-access-token-for-command-line-use and record it in the GITHUB_PAT envar in your .Renviron file.

  • Interactive - Interactively login into your GitHub account and authorise with OAuth.

Using the PAT method is recommended.

Using the gist_auth() function you can authenticate separately first, or if you're not authenticated, this function will run internally with each function call. If you have a PAT, that will be used, if not, OAuth will be used.

Usage

map_gist(
  input,
  lat = "lat",
  lon = "long",
  geometry = "point",
  group = NULL,
  type = "FeatureCollection",
  file = "myfile.geojson",
  description = "",
  public = TRUE,
  browse = TRUE,
  ...
)

Arguments

input

Input object

lat

Name of latitude variable

lon

Name of longitude variable

geometry

(character) Are polygons in the object

group

(character) A grouping variable to perform grouping for polygons - doesn't apply for points

type

(character) One of FeatureCollection or GeometryCollection

file

File name to use to put up as the gist file

description

Description for the GitHub gist, or leave to default (=no description)

public

(logical) Want gist to be public or not? Default: TRUE

browse

If TRUE (default) the map opens in your default browser.

...

Further arguments passed on to httr::POST

Examples

## Not run: 
if (!identical(Sys.getenv("GITHUB_PAT"), "")) {

  # From file
  file <- "myfile.geojson"
  geojson_write(us_cities[1:20, ], lat = "lat", lon = "long", file = file)
  map_gist(file = as.location(file))

  # From SpatialPoints class
  library("sp")
  x <- c(1, 2, 3, 4, 5)
  y <- c(3, 2, 5, 1, 4)
  s <- SpatialPoints(cbind(x, y))
  map_gist(s)

  # from SpatialPointsDataFrame class
  x <- c(1, 2, 3, 4, 5)
  y <- c(3, 2, 5, 1, 4)
  s <- SpatialPointsDataFrame(cbind(x, y), mtcars[1:5, ])
  map_gist(s)

  # from SpatialPolygons class
  poly1 <- Polygons(list(Polygon(cbind(
    c(-100, -90, -85, -100),
    c(40, 50, 45, 40)
  ))), "1")
  poly2 <- Polygons(list(Polygon(cbind(
    c(-90, -80, -75, -90),
    c(30, 40, 35, 30)
  ))), "2")
  sp_poly <- SpatialPolygons(list(poly1, poly2), 1:2)
  map_gist(sp_poly)

  # From SpatialPolygonsDataFrame class
  sp_polydf <- as(sp_poly, "SpatialPolygonsDataFrame")
  map_gist(sp_poly)

  # From SpatialLines class
  c1 <- cbind(c(1, 2, 3), c(3, 2, 2))
  c2 <- cbind(c1[, 1] + .05, c1[, 2] + .05)
  c3 <- cbind(c(1, 2, 3), c(1, 1.5, 1))
  L1 <- Line(c1)
  L2 <- Line(c2)
  L3 <- Line(c3)
  Ls1 <- Lines(list(L1), ID = "a")
  Ls2 <- Lines(list(L2, L3), ID = "b")
  sl1 <- SpatialLines(list(Ls1))
  sl12 <- SpatialLines(list(Ls1, Ls2))
  map_gist(sl1)

  # From SpatialLinesDataFrame class
  dat <- data.frame(
    X = c("Blue", "Green"),
    Y = c("Train", "Plane"),
    Z = c("Road", "River"), row.names = c("a", "b")
  )
  sldf <- SpatialLinesDataFrame(sl12, dat)
  map_gist(sldf)

  # From SpatialGrid
  x <- GridTopology(c(0, 0), c(1, 1), c(5, 5))
  y <- SpatialGrid(x)
  map_gist(y)

  # From SpatialGridDataFrame
  sgdim <- c(3, 4)
  sg <- SpatialGrid(GridTopology(rep(0, 2), rep(10, 2), sgdim))
  sgdf <- SpatialGridDataFrame(sg, data.frame(val = 1:12))
  map_gist(sgdf)

  # from data.frame
  ## to points
  map_gist(us_cities)

  ## to polygons
  head(states)
  map_gist(states[1:351, ], lat = "lat", lon = "long", geometry = "polygon", group = "group")

  ## From a list
  mylist <- list(
    list(lat = 30, long = 120, marker = "red"),
    list(lat = 30, long = 130, marker = "blue")
  )
  map_gist(mylist, lat = "lat", lon = "long")

  # From a numeric vector
  ## of length 2 to a point
  vec <- c(-99.74, 32.45)
  map_gist(vec)

  ## this requires numeric class input, so inputting a list will dispatch on the list method
  poly <- c(
    c(-114.345703125, 39.436192999314095),
    c(-114.345703125, 43.45291889355468),
    c(-106.61132812499999, 43.45291889355468),
    c(-106.61132812499999, 39.436192999314095),
    c(-114.345703125, 39.436192999314095)
  )
  map_gist(poly, geometry = "polygon")

  # From a json object
  (x <- geojson_json(c(-99.74, 32.45)))
  map_gist(x)
  ## another example
  map_gist(geojson_json(us_cities[1:10, ], lat = "lat", lon = "long"))

  # From a geo_list object
  (res <- geojson_list(us_cities[1:2, ], lat = "lat", lon = "long"))
  map_gist(res)

  # From SpatialPixels
  pixels <- suppressWarnings(SpatialPixels(SpatialPoints(us_cities[c("long", "lat")])))
  summary(pixels)
  map_gist(pixels)

  # From SpatialPixelsDataFrame
  pixelsdf <- suppressWarnings(
    SpatialPixelsDataFrame(points = canada_cities[c("long", "lat")], data = canada_cities)
  )
  map_gist(pixelsdf)

}

## End(Not run)

Make an interactive map locally

Description

Make an interactive map locally

Usage

map_leaf(input, lat = NULL, lon = NULL, basemap = "Stamen.Toner", ...)

Arguments

input

Input object

lat

Name of latitude variable

lon

Name of longitude variable

basemap

Basemap to use. See leaflet::addProviderTiles. Default: Stamen.Toner

...

Further arguments passed on to leaflet::addPolygons, leaflet::addMarkers, leaflet::addGeoJSON, or leaflet::addPolylines

Examples

## Not run: 
# We'll need leaflet below
library("leaflet")

# From file
file <- "myfile.geojson"
geojson_write(us_cities[1:20, ], lat = "lat", lon = "long", file = file)
map_leaf(as.location(file))

# From SpatialPoints class
library("sp")
x <- c(1, 2, 3, 4, 20)
y <- c(3, 2, 5, 3, 4)
s <- SpatialPoints(cbind(x, y))
map_leaf(s)

# from SpatialPointsDataFrame class
x <- c(1, 2, 3, 4, 5)
y <- c(3, 2, 5, 1, 4)
s <- SpatialPointsDataFrame(cbind(x, y), mtcars[1:5, ])
map_leaf(s)

# from SpatialPolygons class
poly1 <- Polygons(list(Polygon(cbind(
  c(-100, -90, -85, -100),
  c(40, 50, 45, 40)
))), "1")
poly2 <- Polygons(list(Polygon(cbind(
  c(-90, -80, -75, -90),
  c(30, 40, 35, 30)
))), "2")
sp_poly <- SpatialPolygons(list(poly1, poly2), 1:2)
map_leaf(sp_poly)

# From SpatialPolygonsDataFrame class
sp_polydf <- as(sp_poly, "SpatialPolygonsDataFrame")
map_leaf(sp_poly)

# From SpatialLines class
c1 <- cbind(c(1, 2, 3), c(3, 2, 2))
c2 <- cbind(c1[, 1] + .05, c1[, 2] + .05)
c3 <- cbind(c(1, 2, 3), c(1, 1.5, 1))
L1 <- Line(c1)
L2 <- Line(c2)
L3 <- Line(c3)
Ls1 <- Lines(list(L1), ID = "a")
Ls2 <- Lines(list(L2, L3), ID = "b")
sl1 <- SpatialLines(list(Ls1))
sl12 <- SpatialLines(list(Ls1, Ls2))
map_leaf(sl1)
map_leaf(sl12)

# From SpatialLinesDataFrame class
dat <- data.frame(
  X = c("Blue", "Green"),
  Y = c("Train", "Plane"),
  Z = c("Road", "River"), row.names = c("a", "b")
)
sldf <- SpatialLinesDataFrame(sl12, dat)
map_leaf(sldf)

# From SpatialGrid
x <- GridTopology(c(0, 0), c(1, 1), c(5, 5))
y <- SpatialGrid(x)
map_leaf(y)

# From SpatialGridDataFrame
sgdim <- c(3, 4)
sg <- SpatialGrid(GridTopology(rep(0, 2), rep(10, 2), sgdim))
sgdf <- SpatialGridDataFrame(sg, data.frame(val = 1:12))
map_leaf(sgdf)

# from data.frame
map_leaf(us_cities)

## another example
head(states)
map_leaf(states[1:351, ])

## From a named list
mylist <- list(
  list(lat = 30, long = 120, marker = "red"),
  list(lat = 30, long = 130, marker = "blue")
)
map_leaf(mylist, lat = "lat", lon = "long")

## From an unnamed list
poly <- list(
  c(-114.345703125, 39.436192999314095),
  c(-114.345703125, 43.45291889355468),
  c(-106.61132812499999, 43.45291889355468),
  c(-106.61132812499999, 39.436192999314095),
  c(-114.345703125, 39.436192999314095)
)
map_leaf(poly)
## NOTE: Polygons from lists aren't supported yet

# From a json object
map_leaf(geojson_json(c(-99.74, 32.45)))
map_leaf(geojson_json(c(-119, 45)))
map_leaf(geojson_json(c(-99.74, 32.45)))
## another example
map_leaf(geojson_json(us_cities[1:10, ], lat = "lat", lon = "long"))

# From a geo_list object
(res <- geojson_list(us_cities[1:2, ], lat = "lat", lon = "long"))
map_leaf(res)

# From SpatialPixels
pixels <- suppressWarnings(SpatialPixels(SpatialPoints(us_cities[c("long", "lat")])))
summary(pixels)
map_leaf(pixels)

# From SpatialPixelsDataFrame
pixelsdf <- suppressWarnings(
  SpatialPixelsDataFrame(points = canada_cities[c("long", "lat")], data = canada_cities)
)
map_leaf(pixelsdf)

# basemap toggling ------------------------
map_leaf(us_cities, basemap = "Acetate.terrain")
map_leaf(us_cities, basemap = "CartoDB.Positron")
map_leaf(us_cities, basemap = "OpenTopoMap")

# leaflet options ------------------------
map_leaf(us_cities) %>%
  addPopups(-122.327298, 47.597131, "foo bar", options = popupOptions(closeButton = FALSE))

####### not working yet
# From a numeric vector
## of length 2 to a point
## vec <- c(-99.74,32.45)
## map_leaf(vec)

## End(Not run)

PostGIS setup

Description

geojson_read() allows you to get data out of a PostgreSQL database set up with PostGIS. Below are steps for setting up data that we can at the end query with geojson_read()

Details

If you don't already have PostgreSQL or PostGIS:

  • PostgreSQL installation: https://www.postgresql.org/download/

  • PostGIS installation: https://postgis.net/install/

Once you have both of those installed, you can proceed below.

Examples

## Not run: 
if (requireNamespace("DBI") && requireNamespace("RPostgres")) {
  library("DBI")
  library("RPostgres")

  # Create connection
  conn <- tryCatch(dbConnect(RPostgres::Postgres()), error = function(e) e)
  if (inherits(conn, "PqConnection")) {

    # Create database
    dbSendQuery(conn, "CREATE DATABASE postgistest")

    # New connection to the created database
    conn <- dbConnect(RPostgres::Postgres(), dbname = "postgistest")

    # Initialize PostGIS in Postgres
    dbSendQuery(conn, "CREATE EXTENSION postgis")
    dbSendQuery(conn, "SELECT postgis_full_version()")

    # Create table
    dbSendQuery(conn, "CREATE TABLE locations(loc_id integer primary key
   , loc_name varchar(70), geog geography(POINT) );")

    # Insert data
    dbSendQuery(conn, "INSERT INTO locations(loc_id, loc_name, geog)
 VALUES (1, 'Waltham, MA', ST_GeogFromText('POINT(42.40047 -71.2577)') )
   , (2, 'Manchester, NH', ST_GeogFromText('POINT(42.99019 -71.46259)') )
   , (3, 'TI Blvd, TX', ST_GeogFromText('POINT(-96.75724 32.90977)') );")


    # Get data (notice warnings of unknown field type for geog)
    dbGetQuery(conn, "SELECT * from locations")


    # Once you're setup, use geojson_read()
    conn <- dbConnect(RPostgres::Postgres(), dbname = "postgistest")
    state <- "SELECT row_to_json(fc)
 FROM (SELECT 'FeatureCollection' As type, array_to_json(array_agg(f)) As features
 FROM (SELECT 'Feature' As type
    , ST_AsGeoJSON(lg.geog)::json As geometry
    , row_to_json((SELECT l FROM (SELECT loc_id, loc_name) As l
      )) As properties
   FROM locations As lg   ) As f )  As fc;"
    json <- geojson_read(conn, query = state, what = "json")

    ## map the geojson with map_leaf()
    map_leaf(json)
  }
}

## End(Not run)

Convert json input to pretty printed output

Description

Convert json input to pretty printed output

Usage

pretty(x, indent = 4)

Arguments

x

Input, character string

indent

(integer) Number of spaces to indent

Details

Only works with json class input. This is a simple wrapper around jsonlite::prettify(), so you can easily use that yourself.


topojson projections and extensions

Description

topojson projections and extensions

Usage

projections(
  proj,
  rotate = NULL,
  center = NULL,
  translate = NULL,
  scale = NULL,
  clipAngle = NULL,
  precision = NULL,
  parallels = NULL,
  clipExtent = NULL,
  invert = NULL
)

Arguments

proj

Map projection name. One of albers, albersUsa, azimuthalEqualArea, azimuthalEquidistant, conicEqualArea, conicConformal, conicEquidistant, equirectangular, gnomonic, mercator, orthographic, stereographic, or transverseMercator.

rotate

If rotation is specified, sets the projection's three-axis rotation to the specified angles yaw, pitch and roll (or equivalently longitude, latitude and roll) in degrees and returns the projection. If rotation is not specified, returns the current rotation which defaults ⁠[0, 0, 0]⁠. If the specified rotation has only two values, rather than three, the roll is assumed to be 0.

center

If center is specified, sets the projection's center to the specified location, a two-element array of longitude and latitude in degrees and returns the projection. If center is not specified, returns the current center which defaults to (0,0)

translate

If point is specified, sets the projection's translation offset to the specified two-element array ⁠[x, y]⁠ and returns the projection. If point is not specified, returns the current translation offset which defaults to ⁠[480, 250]⁠. The translation offset determines the pixel coordinates of the projection's center. The default translation offset places (0,0) at the center of a 960x500 area.

scale

If scale is specified, sets the projection's scale factor to the specified value and returns the projection. If scale is not specified, returns the current scale factor which defaults to 150. The scale factor corresponds linearly to the distance between projected points. However, scale factors are not consistent across projections.

clipAngle

If angle is specified, sets the projection's clipping circle radius to the specified angle in degrees and returns the projection. If angle is null, switches to antimeridian cutting rather than small-circle clipping. If angle is not specified, returns the current clip angle which defaults to null. Small-circle clipping is independent of viewport clipping via clipExtent.

precision

If precision is specified, sets the threshold for the projection's adaptive resampling to the specified value in pixels and returns the projection. This value corresponds to the Douglas-Peucker distance. If precision is not specified, returns the projection's current resampling precision which defaults to Math.SQRT(1/2).

parallels

Depends on the projection used! See https://github.com/mbostock/d3/wiki/Geo-Projections#standard-projections for help

clipExtent

If extent is specified, sets the projection's viewport clip extent to the specified bounds in pixels and returns the projection. The extent bounds are specified as an array ⁠[[x0, y0], [x1, y1]]⁠, where x0 is the left-side of the viewport, y0 is the top, x1 is the right and y1 is the bottom. If extent is null, no viewport clipping is performed. If extent is not specified, returns the current viewport clip extent which defaults to null. Viewport clipping is independent of small-circle clipping via clipAngle.

invert

Projects backward from Cartesian coordinates (in pixels) to spherical coordinates (in degrees). Returns an array ⁠[longitude, latitude]⁠ given the input array ⁠[x, y]⁠.

Examples

projections(proj = "albers")
projections(proj = "albers", rotate = "[98 + 00 / 60, -35 - 00 / 60]", scale = 5700)
projections(proj = "albers", scale = 5700)
projections(proj = "albers", translate = "[55 * width / 100, 52 * height / 100]")
projections(proj = "albers", clipAngle = 90)
projections(proj = "albers", precision = 0.1)
projections(proj = "albers", parallels = "[30, 62]")
projections(proj = "albers", clipExtent = "[[105 - 87, 40], [105 + 87 + 1e-6, 82 + 1e-6]]")
projections(proj = "albers", invert = 60)
projections("orthographic")

This is the same data set from the ggplot2 library

Description

This is a data.frame with "long", "lat", "group", "order", "region", and "subregion" columns specifying polygons for each US state.


Convert many input types with spatial data to TopoJSON as a JSON string

Description

Convert many input types with spatial data to TopoJSON as a JSON string

Usage

topojson_json(
  input,
  lat = NULL,
  lon = NULL,
  group = NULL,
  geometry = "point",
  type = "FeatureCollection",
  convert_wgs84 = FALSE,
  crs = NULL,
  object_name = "foo",
  quantization = 0,
  ...
)

Arguments

input

Input list, data.frame, spatial class, or sf class. Inputs can also be dplyr tbl_df class since it inherits from data.frame.

lat

(character) Latitude name. The default is NULL, and we attempt to guess.

lon

(character) Longitude name. The default is NULL, and we attempt to guess.

group

(character) A grouping variable to perform grouping for polygons - doesn't apply for points

geometry

(character) One of point (Default) or polygon.

type

(character) The type of collection. One of 'auto' (default for 'sf' objects), 'FeatureCollection' (default for everything else), or 'GeometryCollection'. "skip" skips the coercion with package geojson functions; skipping can save significant run time on larger geojson objects. Spatial objects can only accept "FeatureCollection" or "skip". "skip" is not available as an option for numeric, list, and data.frame classes

convert_wgs84

Should the input be converted to the standard CRS system for GeoJSON (https://tools.ietf.org/html/rfc7946) (geographic coordinate reference system, using the WGS84 datum, with longitude and latitude units of decimal degrees; EPSG: 4326). Default is FALSE though this may change in a future package version. This will only work for sf or Spatial objects with a CRS already defined. If one is not defined but you know what it is, you may define it in the crs argument below.

crs

The CRS of the input if it is not already defined. This can be an epsg code as a four or five digit integer or a valid proj4 string. This argument will be ignored if convert_wgs84 is FALSE or the object already has a CRS.

object_name

(character) name to give to the TopoJSON object created. Default: "foo"

quantization

(numeric) quantization parameter, use this to quantize geometry prior to computing topology. Typical values are powers of ten (1e4, 1e5, ...), default is 0 to not perform quantization. For more information about quantization, see this by Mike Bostock https://stackoverflow.com/questions/18900022/topojson-quantization-vs-simplification/18921214#18921214

...

args passed down to geojson_json(); see geojson_json() for help on what's supported here

Details

The type parameter is automatically converted to type="auto" if a sf, sfc, or sfg class is passed to input

Value

An object of class geo_json (and json)

Examples

## Not run: 
# From a numeric vector of length 2, making a point type
topojson_json(c(-99.74, 32.45), pretty = TRUE)
topojson_json(c(-99.74, 32.45), type = "GeometryCollection")

## polygon type
### this requires numeric class input, so inputting a list will dispatch on the list method
poly <- c(
  c(-114.345703125, 39.436192999314095),
  c(-114.345703125, 43.45291889355468),
  c(-106.61132812499999, 43.45291889355468),
  c(-106.61132812499999, 39.436192999314095),
  c(-114.345703125, 39.436192999314095)
)
topojson_json(poly, geometry = "polygon", pretty = TRUE)

# Lists
## From a list of numeric vectors to a polygon
vecs <- list(c(100.0, 0.0), c(101.0, 0.0), c(101.0, 1.0), c(100.0, 1.0), c(100.0, 0.0))
topojson_json(vecs, geometry = "polygon", pretty = TRUE)

## from a named list
mylist <- list(
  list(latitude = 30, longitude = 120, marker = "red"),
  list(latitude = 30, longitude = 130, marker = "blue")
)
topojson_json(mylist, lat = "latitude", lon = "longitude")

# From a data.frame to points
topojson_json(us_cities[1:2, ], lat = "lat", lon = "long", pretty = TRUE)
topojson_json(us_cities[1:2, ],
  lat = "lat", lon = "long",
  type = "GeometryCollection", pretty = TRUE
)

# from data.frame to polygons
head(states)
## make list for input to e.g., rMaps
topojson_json(states[1:351, ], lat = "lat", lon = "long", geometry = "polygon", group = "group")

# from a geo_list
a <- geojson_list(us_cities[1:2, ], lat = "lat", lon = "long")
topojson_json(a)

# sp classes

## From SpatialPolygons class
library("sp")
poly1 <- Polygons(list(Polygon(cbind(
  c(-100, -90, -85, -100),
  c(40, 50, 45, 40)
))), "1")
poly2 <- Polygons(list(Polygon(cbind(
  c(-90, -80, -75, -90),
  c(30, 40, 35, 30)
))), "2")
sp_poly <- SpatialPolygons(list(poly1, poly2), 1:2)
topojson_json(sp_poly)
topojson_json(sp_poly, pretty = TRUE)

## data.frame to geojson
geojson_write(us_cities[1:2, ], lat = "lat", lon = "long") %>% as.json()

# From SpatialPoints class
x <- c(1, 2, 3, 4, 5)
y <- c(3, 2, 5, 1, 4)
s <- SpatialPoints(cbind(x, y))
topojson_json(s)

## From SpatialPointsDataFrame class
s <- SpatialPointsDataFrame(cbind(x, y), mtcars[1:5, ])
topojson_json(s)

## From SpatialLines class
library("sp")
c1 <- cbind(c(1, 2, 3), c(3, 2, 2))
c2 <- cbind(c1[, 1] + .05, c1[, 2] + .05)
c3 <- cbind(c(1, 2, 3), c(1, 1.5, 1))
L1 <- Line(c1)
L2 <- Line(c2)
L3 <- Line(c3)
Ls1 <- Lines(list(L1), ID = "a")
Ls2 <- Lines(list(L2, L3), ID = "b")
sl1 <- SpatialLines(list(Ls1))
sl12 <- SpatialLines(list(Ls1, Ls2))
topojson_json(sl1)
topojson_json(sl12)

## From SpatialLinesDataFrame class
dat <- data.frame(
  X = c("Blue", "Green"),
  Y = c("Train", "Plane"),
  Z = c("Road", "River"), row.names = c("a", "b")
)
sldf <- SpatialLinesDataFrame(sl12, dat)
topojson_json(sldf)
topojson_json(sldf, pretty = TRUE)

## From SpatialGrid
x <- GridTopology(c(0, 0), c(1, 1), c(5, 5))
y <- SpatialGrid(x)
topojson_json(y)

## From SpatialGridDataFrame
sgdim <- c(3, 4)
sg <- SpatialGrid(GridTopology(rep(0, 2), rep(10, 2), sgdim))
sgdf <- SpatialGridDataFrame(sg, data.frame(val = 1:12))
topojson_json(sgdf)

# From SpatialPixels
library("sp")
pixels <- suppressWarnings(SpatialPixels(SpatialPoints(us_cities[c("long", "lat")])))
summary(pixels)
topojson_json(pixels)

# From SpatialPixelsDataFrame
library("sp")
pixelsdf <- suppressWarnings(
  SpatialPixelsDataFrame(points = canada_cities[c("long", "lat")], data = canada_cities)
)
topojson_json(pixelsdf)

# From sf classes:
if (require(sf)) {
  ## sfg (a single simple features geometry)
  p1 <- rbind(c(0, 0), c(1, 0), c(3, 2), c(2, 4), c(1, 4), c(0, 0))
  poly <- rbind(c(1, 1), c(1, 2), c(2, 2), c(1, 1))
  poly_sfg <- st_polygon(list(p1))
  topojson_json(poly_sfg)

  ## sfc (a collection of geometries)
  p1 <- rbind(c(0, 0), c(1, 0), c(3, 2), c(2, 4), c(1, 4), c(0, 0))
  p2 <- rbind(c(5, 5), c(5, 6), c(4, 5), c(5, 5))
  poly_sfc <- st_sfc(st_polygon(list(p1)), st_polygon(list(p2)))
  topojson_json(poly_sfc)

  ## sf (collection of geometries with attributes)
  p1 <- rbind(c(0, 0), c(1, 0), c(3, 2), c(2, 4), c(1, 4), c(0, 0))
  p2 <- rbind(c(5, 5), c(5, 6), c(4, 5), c(5, 5))
  poly_sfc <- st_sfc(st_polygon(list(p1)), st_polygon(list(p2)))
  poly_sf <- st_sf(foo = c("a", "b"), bar = 1:2, poly_sfc)
  topojson_json(poly_sf)
}

## Pretty print a json string
topojson_json(c(-99.74, 32.45))
topojson_json(c(-99.74, 32.45)) %>% pretty()

## End(Not run)

Convert many input types with spatial data to TopoJSON as a list

Description

Convert many input types with spatial data to TopoJSON as a list

Usage

topojson_list(
  input,
  lat = NULL,
  lon = NULL,
  group = NULL,
  geometry = "point",
  type = "FeatureCollection",
  convert_wgs84 = FALSE,
  crs = NULL,
  object_name = "foo",
  quantization = 0,
  ...
)

Arguments

input

Input list, data.frame, spatial class, or sf class. Inputs can also be dplyr tbl_df class since it inherits from data.frame

lat

(character) Latitude name. The default is NULL, and we attempt to guess.

lon

(character) Longitude name. The default is NULL, and we attempt to guess.

group

(character) A grouping variable to perform grouping for polygons - doesn't apply for points

geometry

(character) One of point (Default) or polygon.

type

(character) The type of collection. One of FeatureCollection (default) or GeometryCollection.

convert_wgs84

Should the input be converted to the standard CRS for GeoJSON (https://tools.ietf.org/html/rfc7946) (geographic coordinate reference system, using the WGS84 datum, with longitude and latitude units of decimal degrees; EPSG: 4326). Default is FALSE though this may change in a future package version. This will only work for sf or Spatial objects with a CRS already defined. If one is not defined but you know what it is, you may define it in the crs argument below.

crs

The CRS of the input if it is not already defined. This can be an epsg code as a four or five digit integer or a valid proj4 string. This argument will be ignored if convert_wgs84 is FALSE or the object already has a CRS.

object_name

(character) name to give to the TopoJSON object created. Default: "foo"

quantization

(numeric) quantization parameter, use this to quantize geometry prior to computing topology. Typical values are powers of ten (1e4, 1e5, ...), default is 0 to not perform quantization. For more information about quantization, see this by Mike Bostock https://stackoverflow.com/questions/18900022/topojson-quantization-vs-simplification/18921214#18921214

...

args passed down through topojson_json() to geojson_json(); see geojson_json() for help on what's supported here

Details

Internally, we call topojson_json(), then use an internal function to convert that JSON output to a list

The type parameter is automatically converted to type="auto" if a sf, sfc, or sfg class is passed to input

Value

a list with TopoJSON

Examples

## Not run: 
# From a numeric vector of length 2 to a point
vec <- c(-99.74, 32.45)
topojson_list(vec)

# Lists
## From a list
mylist <- list(
  list(latitude = 30, longitude = 120, marker = "red"),
  list(latitude = 30, longitude = 130, marker = "blue")
)
topojson_list(mylist)

## From a list of numeric vectors to a polygon
vecs <- list(c(100.0, 0.0), c(101.0, 0.0), c(101.0, 1.0), c(100.0, 1.0), c(100.0, 0.0))
topojson_list(vecs, geometry = "polygon")

# from data.frame to points
(res <- topojson_list(us_cities[1:2, ], lat = "lat", lon = "long"))
as.json(res)
## guess lat/long columns
topojson_list(us_cities[1:2, ])
topojson_list(states[1:3, ])
topojson_list(states[1:351, ], geometry = "polygon", group = "group")
topojson_list(canada_cities[1:30, ])

# from data.frame to polygons
head(states)
topojson_list(states[1:351, ], lat = "lat", lon = "long", geometry = "polygon", group = "group")

# From SpatialPolygons class
library("sp")
poly1 <- Polygons(list(Polygon(cbind(
  c(-100, -90, -85, -100),
  c(40, 50, 45, 40)
))), "1")
poly2 <- Polygons(list(Polygon(cbind(
  c(-90, -80, -75, -90),
  c(30, 40, 35, 30)
))), "2")
sp_poly <- SpatialPolygons(list(poly1, poly2), 1:2)
topojson_list(sp_poly)

# From SpatialPolygonsDataFrame class
sp_polydf <- as(sp_poly, "SpatialPolygonsDataFrame")
topojson_list(input = sp_polydf)

# From SpatialPoints class
x <- c(1, 2, 3, 4, 5)
y <- c(3, 2, 5, 1, 4)
s <- SpatialPoints(cbind(x, y))
topojson_list(s)

# From SpatialPointsDataFrame class
s <- SpatialPointsDataFrame(cbind(x, y), mtcars[1:5, ])
topojson_list(s)

# From SpatialLines class
library("sp")
c1 <- cbind(c(1, 2, 3), c(3, 2, 2))
c2 <- cbind(c1[, 1] + .05, c1[, 2] + .05)
c3 <- cbind(c(1, 2, 3), c(1, 1.5, 1))
L1 <- Line(c1)
L2 <- Line(c2)
L3 <- Line(c3)
Ls1 <- Lines(list(L1), ID = "a")
Ls2 <- Lines(list(L2, L3), ID = "b")
sl1 <- SpatialLines(list(Ls1))
sl12 <- SpatialLines(list(Ls1, Ls2))
topojson_list(sl1)
topojson_list(sl12)
as.json(topojson_list(sl12))
as.json(topojson_list(sl12), pretty = TRUE)

# From SpatialLinesDataFrame class
dat <- data.frame(
  X = c("Blue", "Green"),
  Y = c("Train", "Plane"),
  Z = c("Road", "River"), row.names = c("a", "b")
)
sldf <- SpatialLinesDataFrame(sl12, dat)
topojson_list(sldf)
as.json(topojson_list(sldf))
as.json(topojson_list(sldf), pretty = TRUE)

# From SpatialGrid
x <- GridTopology(c(0, 0), c(1, 1), c(5, 5))
y <- SpatialGrid(x)
topojson_list(y)

# From SpatialGridDataFrame
sgdim <- c(3, 4)
sg <- SpatialGrid(GridTopology(rep(0, 2), rep(10, 2), sgdim))
sgdf <- SpatialGridDataFrame(sg, data.frame(val = 1:12))
topojson_list(sgdf)

# From SpatialPixels
library("sp")
pixels <- suppressWarnings(SpatialPixels(SpatialPoints(us_cities[c("long", "lat")])))
summary(pixels)
topojson_list(pixels)

# From SpatialPixelsDataFrame
library("sp")
pixelsdf <- suppressWarnings(
  SpatialPixelsDataFrame(points = canada_cities[c("long", "lat")], data = canada_cities)
)
topojson_list(pixelsdf)


## End(Not run)

# From sf classes:
if (require(sf)) {
  ## sfg (a single simple features geometry)
  p1 <- rbind(c(0, 0), c(1, 0), c(3, 2), c(2, 4), c(1, 4), c(0, 0))
  poly <- rbind(c(1, 1), c(1, 2), c(2, 2), c(1, 1))
  poly_sfg <- st_polygon(list(p1))
  topojson_list(poly_sfg)

  ## sfc (a collection of geometries)
  p1 <- rbind(c(0, 0), c(1, 0), c(3, 2), c(2, 4), c(1, 4), c(0, 0))
  p2 <- rbind(c(5, 5), c(5, 6), c(4, 5), c(5, 5))
  poly_sfc <- st_sfc(st_polygon(list(p1)), st_polygon(list(p2)))
  topojson_list(poly_sfc)

  ## sf (collection of geometries with attributes)
  p1 <- rbind(c(0, 0), c(1, 0), c(3, 2), c(2, 4), c(1, 4), c(0, 0))
  p2 <- rbind(c(5, 5), c(5, 6), c(4, 5), c(5, 5))
  poly_sfc <- st_sfc(st_polygon(list(p1)), st_polygon(list(p2)))
  poly_sf <- st_sf(foo = c("a", "b"), bar = 1:2, poly_sfc)
  topojson_list(poly_sf)
}

Read topojson from a local file or a URL

Description

Read topojson from a local file or a URL

Usage

topojson_read(x, ...)

Arguments

x

Path to a local file or a URL.

...

Further args passed on to sf::st_read(). Can use any args from sf::st_read() except quiet, which we have set as quiet = TRUE internally already

Details

Returns a sf class, but you can easily and quickly get this to geojson, see examples.

Note that this does not give you Topojson, but gives you a sf class - which you can use then to turn it into geojson as a list or json

Value

an object of class sf/data.frame

See Also

geojson_read(), topojson_write()

Examples

## Not run: 
# From a file
file <- system.file("examples", "us_states.topojson", package = "geojsonio")
topojson_read(file)

# From a URL
url <- "https://raw.githubusercontent.com/shawnbot/d3-cartogram/master/data/us-states.topojson"
topojson_read(url)

# Use as.location first if you want
topojson_read(as.location(file))

# quickly convert to geojson as a list
file <- system.file("examples", "us_states.topojson", package = "geojsonio")
tmp <- topojson_read(file)
geojson_list(tmp)
geojson_json(tmp)

# pass on args
topojson_read(file, quiet = TRUE)
topojson_read(file, stringsAsFactors = FALSE)

## End(Not run)

Write TopoJSON from various inputs

Description

Write TopoJSON from various inputs

Usage

topojson_write(
  input,
  lat = NULL,
  lon = NULL,
  geometry = "point",
  group = NULL,
  file = "myfile.topojson",
  overwrite = TRUE,
  precision = NULL,
  convert_wgs84 = FALSE,
  crs = NULL,
  object_name = "foo",
  quantization = 0,
  ...
)

Arguments

input

Input list, data.frame, spatial class, or sf class. Inputs can also be dplyr tbl_df class since it inherits from data.frame

lat

(character) Latitude name. The default is NULL, and we attempt to guess.

lon

(character) Longitude name. The default is NULL, and we attempt to guess.

geometry

(character) One of point (Default) or polygon.

group

(character) A grouping variable to perform grouping for polygons - doesn't apply for points

file

(character) A path and file name (e.g., myfile), with the .geojson file extension. Default writes to current working directory.

overwrite

(logical) Overwrite the file given in file with input. Default: TRUE. If this param is FALSE and the file already exists, we stop with error message.

precision

desired number of decimal places for the coordinates in the geojson file. Using fewer decimal places can decrease file sizes (at the cost of precision).

convert_wgs84

Should the input be converted to the standard CRS for GeoJSON (https://tools.ietf.org/html/rfc7946) (geographic coordinate reference system, using the WGS84 datum, with longitude and latitude units of decimal degrees; EPSG: 4326). Default is FALSE though this may change in a future package version. This will only work for sf or Spatial objects with a CRS already defined. If one is not defined but you know what it is, you may define it in the crs argument below.

crs

The CRS of the input if it is not already defined. This can be an epsg code as a four or five digit integer or a valid proj4 string. This argument will be ignored if convert_wgs84 is FALSE or the object already has a CRS.

object_name

(character) name to give to the TopoJSON object created. Default: "foo"

quantization

(numeric) quantization parameter, use this to quantize geometry prior to computing topology. Typical values are powers of ten (1e4, 1e5, ...), default is 0 to not perform quantization. For more information about quantization, see this by Mike Bostock https://stackoverflow.com/questions/18900022/topojson-quantization-vs-simplification/18921214#18921214

...

Further args passed on to internal functions. For Spatial* classes, data.frames, regular lists, and numerics, it is passed through to sf::st_write(). For sf classes, geo_lists and json classes, it is passed through to jsonlite::toJSON().

Details

Under the hood we simply wrap geojson_write(), then take the GeoJSON output of that operation, then convert to TopoJSON with geo2topo(), then write to disk.

Unfortunately, this process requires a number of round trips to disk, so speed ups will hopefully come soon.

Any intermediate geojson files are cleaned up (deleted).

Value

A topojson_write class, with two elements:

  • path: path to the file with the TopoJSON

  • type: type of object the TopoJSON came from, e.g., SpatialPoints

See Also

geojson_write(), topojson_read()


This is the same data set from the maps library, named differently

Description

This database is of us cities of population greater than about 40,000. Also included are state capitals of any population size.

Format

A list with 6 components, namely "name", "country.etc", "pop", "lat", "long", and "capital", containing the city name, the state abbreviation, approximate population (as at January 2006), latitude, longitude and capital status indication (0 for non-capital, 1 for capital, 2 for state capital.