Performance

All the tests were done on an Arch Linux x86_64 machine with an Intel(R) Core(TM) i7 CPU (1.90GHz).

Empirical likelihood computation

We show the performance of computing empirical likelihood with el_mean(). We test the computation speed with simulated data sets in two different settings: 1) the number of observations increases with the number of parameters fixed, and 2) the number of parameters increases with the number of observations fixed.

Increasing the number of observations

We fix the number of parameters at p = 10, and simulate the parameter value and n × p matrices using rnorm(). In order to ensure convergence with a large n, we set a large threshold value using el_control().

library(ggplot2)
library(microbenchmark)
set.seed(3175775)
p <- 10
par <- rnorm(p, sd = 0.1)
ctrl <- el_control(th = 1e+10)
result <- microbenchmark(
  n1e2 = el_mean(matrix(rnorm(100 * p), ncol = p), par = par, control = ctrl),
  n1e3 = el_mean(matrix(rnorm(1000 * p), ncol = p), par = par, control = ctrl),
  n1e4 = el_mean(matrix(rnorm(10000 * p), ncol = p), par = par, control = ctrl),
  n1e5 = el_mean(matrix(rnorm(100000 * p), ncol = p), par = par, control = ctrl)
)

Below are the results:

result
#> Unit: microseconds
#>  expr        min         lq        mean     median         uq        max neval
#>  n1e2    438.107    467.111    504.5707    484.027    543.483    643.230   100
#>  n1e3   1134.205   1359.764   1544.2201   1447.153   1551.878   5808.608   100
#>  n1e4  10451.783  12451.805  14423.6323  14777.522  15706.479  20832.022   100
#>  n1e5 162681.421 182844.891 217144.2352 212064.073 246101.127 330112.434   100
#>  cld
#>  a  
#>  a  
#>   b 
#>    c
autoplot(result)

Increasing the number of parameters

This time we fix the number of observations at n = 1000, and evaluate empirical likelihood at zero vectors of different sizes.

n <- 1000
result2 <- microbenchmark(
  p5 = el_mean(matrix(rnorm(n * 5), ncol = 5),
    par = rep(0, 5),
    control = ctrl
  ),
  p25 = el_mean(matrix(rnorm(n * 25), ncol = 25),
    par = rep(0, 25),
    control = ctrl
  ),
  p100 = el_mean(matrix(rnorm(n * 100), ncol = 100),
    par = rep(0, 100),
    control = ctrl
  ),
  p400 = el_mean(matrix(rnorm(n * 400), ncol = 400),
    par = rep(0, 400),
    control = ctrl
  )
)
result2
#> Unit: microseconds
#>  expr        min         lq        mean      median          uq        max
#>    p5    712.929    759.060    832.3009    787.6685    854.1625   3850.047
#>   p25   2733.305   2796.123   3029.4899   2839.7885   2914.0220  10315.038
#>  p100  21316.264  23767.950  25978.6599  24172.9855  28801.5385  44886.742
#>  p400 239958.180 265454.307 299205.4828 286406.2430 313736.7190 481511.243
#>  neval cld
#>    100 a  
#>    100 a  
#>    100  b 
#>    100   c
autoplot(result2)

On average, evaluating empirical likelihood with a 100000×10 or 1000×400 matrix at a parameter value satisfying the convex hull constraint takes less than a second.