
Package: osfr (via r-universe)
July 5, 2024

Title Interface to the 'Open Science Framework' ('OSF')

Version 0.2.9

Description An interface for interacting with 'OSF'
(<https://osf.io>). 'osfr' enables you to access open research
materials and data, or create and manage your own private or
public projects.

Depends R (>= 3.1.0)

Imports crul (>= 0.7.4), jsonlite, stringi, purrr, tibble (>= 3.0.0),
rlang, fs (>= 1.3.0), memoise, httr

License MIT + file LICENSE

URL https://docs.ropensci.org/osfr/, https://github.com/ropensci/osfr

BugReports https://github.com/ropensci/osfr/issues

Suggests dplyr, logger, rprojroot, brio, testthat, knitr, rmarkdown,
lintr (>= 2.0), covr, spelling, vcr (>= 0.5)

Encoding UTF-8

Language en-US

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.1

VignetteBuilder knitr

Repository https://ropensci.r-universe.dev

RemoteUrl https://github.com/ropensci/osfr

RemoteRef master

RemoteSha 67315ad3cff5d153e21d462f554f877ff8d5bcd3

Contents
osfr-package . 2
as_id . 3
osf_auth . 4

1

https://osf.io
https://docs.ropensci.org/osfr/
https://github.com/ropensci/osfr
https://github.com/ropensci/osfr/issues

2 osfr-package

osf_cp . 5
osf_create . 7
osf_download . 8
osf_ls_files . 10
osf_ls_nodes . 11
osf_mkdir . 12
osf_mv . 13
osf_open . 14
osf_refresh . 15
osf_retrieve . 15
osf_rm . 17
osf_tbl . 18
osf_upload . 19

Index 22

osfr-package osfr: R interface to OSF

Description

osfr provides a suite of functions for interacting with the Open Science Framework (OSF; https:
//osf.io/).

What is OSF?

OSF is a free and open source project management repository designed to support researchers across
their entire project lifecycle. The service includes free cloud storage and file version history, pro-
viding a centralized location for all your research materials that can be kept private, shared with
select collaborators, or made publicly available with citable DOIs.

Most work on OSF is organized around projects. Projects can contain files, groups of files in
directories, and/or files in sub-projects called components. Note there is no storage limit on the
size of projects but individual files must be < 5Gb.

Resources

• To learn more about OSF check out the helpful series of guides published by the Center for
Open Science: https://help.osf.io

• See the vignette for an overview of osfr’s features: vignette("getting_started", package
= "osfr")

Author(s)

Maintainer: Aaron Wolen <aaron@wolen.com> (ORCID)

Authors:

• Chris Hartgerink <chjh@protonmail.com> (ORCID)

https://osf.io/
https://osf.io/
https://help.osf.io
https://orcid.org/0000-0003-2542-2202
https://orcid.org/0000-0003-1050-6809

as_id 3

Other contributors:

• Timothy York <timothypyork@gmail.com> (ORCID) [contributor]

• Ryan Hafen <rhafen@purdue.edu> [contributor]

• Brian Richards <brian.g.richards@gmail.com> [contributor]

• Courtney Soderberg <courtney@cos.io> (ORCID) [contributor]

• Carl Boettiger <cboettig@gmail.com> (ORCID) [reviewer]

• Heidi Seibold <heidi.seibold@stat.uni-muenchen.de> [reviewer]

See Also

Useful links:

• https://docs.ropensci.org/osfr/

• https://github.com/ropensci/osfr

• Report bugs at https://github.com/ropensci/osfr/issues

as_id Extract OSF identifiers

Description

Extract OSF GUIDs and Waterbutler IDs from various types of inputs. Valid looking IDs are re-
turned as osf_id objects.

Usage

as_id(x)

Arguments

x An osf_tbl, OSF URL, or a generic string containing a GUID or Waterbutler
ID.

Value

A character vector with class osf_id.

Identifier types

There are 2 types of identifiers you’ll encounter on OSF. The first is the globally unique identifier, or
GUID, that OSF assigns to every entity. A valid OSF GUID consists of 5 alphanumeric characters.
The second type of identifier is specific to files stored on OSF. All file operations on OSF are
handled via Waterbutler. A valid Waterbutler ID consists of 24 alphanumeric characters.

https://orcid.org/0000-0003-4068-4286
https://orcid.org/0000-0003-1227-7042
https://orcid.org/0000-0002-1642-628X
https://docs.ropensci.org/osfr/
https://github.com/ropensci/osfr
https://github.com/ropensci/osfr/issues

4 osf_auth

Examples

Not run:
extract a GUID from an OSF URL
proj_id <- as_id("https://osf.io/7zqxp/")

extract waterbutler IDs from an `osf_tbl_file`` with multiple files
osf_retrieve_node(proj_id) %>%

osf_ls_files() %>%
as_id()

End(Not run)

osf_auth Authenticate osfr with a personal access token

Description

Authorize osfr to interact with your OSF data and OSF account by passing a personal access token
(PAT) to osf_auth(). If no token is provided, osf_auth() will attempt to obtain a PAT from the
OSF_PAT environment variable. However, since osfr checks for the presence of OSF_PAT on start-up,
this is only necessary if the variable was created or redefined in the middle of a session. See below
for additional details and instructions for generating and utilizing your PAT.

Usage

osf_auth(token = NULL)

Arguments

token OSF personal access token.

Details

Out of the box osfr can only access publicly available projects, components, and files on OSF. In
order for osfr to view and manage your private resources you must provide a Personal Access Token
(PAT). The following instructions will walk you through the process of generating a PAT and using
it to authenticate osfr.

Value

Invisibly returns your OSF PAT along with a message indicating it was registered.

Creating an OSF personal access token

• Navigate to https://osf.io/settings/tokens/

• Click the New token button and provide a descriptive name

• Select the scopes (i.e., permissions) you’d like to grant osfr

https://osf.io/settings/tokens/

osf_cp 5

• Click the Create button to generate your PAT

• If successful, your 70 character token will be displayed along with several important warnings
you should definitely read over carefully

• You read those warnings, right?

• Copy your token and keep it in a safe place

Using your PAT with osfr

There are two possible approaches for authenticating osfr with your PAT.

The simpler approach is to call the osf_auth() function at the start of every new R session and
manually paste in your token. Note that your PAT should be treated like a password and, as such,
should not be hardcoded into your script.

A better approach is to store your PAT as an environment variable called OSF_PAT. Doing so will al-
low osfr to detect and utilize the token automatically without any need to manually call osf_auth().
One way to accomplish this is by creating an .Renviron file in your home or working directory that
defines the OSF_PAT variable. For example:

OSF_PAT=bdEEFMCuBtaBoSK11YzyjOdjUjKtWIj2FWxHl6kTBRax7uaeyBghALumTO1kT8RA

For new users we suggest adding the .Renviron to your home directory so it is automatically ap-
plied to all your projects. To verify this was done correctly, restart R and run Sys.getenv("OSF_PAT"),
which should return your PAT.

References

1. Colin Gillespie and Robin Lovelace (2017). Efficient R programming. O’Reilly Press. https:
//csgillespie.github.io/efficientR/.

Examples

Not run:
manually authenticate with a PAT
osf_auth("bdEEFMCuBtaBoSK11YzyjOdjUjKtWIj2FWxHl6kTBRax7uaeyBghALumTO1kT8RA")

End(Not run)

osf_cp Copy a file or directory

Description

Use osf_cp() to make a copy of a file or directory in a new location.

Usage

osf_cp(x, to, overwrite = FALSE, verbose = FALSE)

https://csgillespie.github.io/efficientR/
https://csgillespie.github.io/efficientR/

6 osf_cp

Arguments

x An osf_tbl_file containing a single file or directory.

to Destination where the file or directory will be copied. This can be one of the
following:

• An osf_tbl_node with a single project or component.
• An osf_tbl_file with a single directory.

overwrite Logical, if a file or directory with the same name already exists at the destination
should it be replaced with x?

verbose Logical, indicating whether to print informative messages about interactions
with the OSF API (default FALSE).

Details

Note that a file (or directory) cannot be moved or copied onto itself, even if overwrite = TRUE.

Value

An osf_tbl_file containing the updated OSF file.

See Also

Other OSF file operations: osf_mkdir(), osf_mv(), osf_rm()

Examples

Not run:
project <- osf_create_project("Flower Data")

write.csv(iris, file = "iris.csv")
data_file <- osf_upload(project,"iris.csv")

Create a new directory to copy our file to
data_dir <- osf_mkdir(project, "data")

Copy the file to our data directory
data_file <- osf_cp(data_file, to = data_dir)

Copy directory to new component
data_comp <- osf_create_component(project, title = "data", category = "data")
data_dir %>%

osf_cp(to = data_comp) %>%
osf_open()

End(Not run)

osf_create 7

osf_create Create a new project or component on OSF

Description

Use osf_create_project() to create a new top-level project on OSF. A nested component can be
created by providing an osf_tbl_node containing an existing project or component to osf_create_component()’s
x argument.

Usage

osf_create_project(
title,
description = NULL,
public = FALSE,
category = "project"

)

osf_create_component(
x,
title,
description = NULL,
public = FALSE,
category = NULL

)

Arguments

title, description
Set a title (required) and, optionally, a description.

public Logical, should it be publicly available (TRUE) or private (FALSE, the default)?

category Character string, specify a category to change the icon displayed on OSF. The
defaults are "project" for projects and "uncategorized" for components. The
specified category can be easily changed later on OSF. Valid category options
include:

• analysis
• communication
• data
• hypothesis
• instrumentation
• methods and measures
• procedure
• project
• software
• other

8 osf_download

x An osf_tbl_node with a single OSF project or component that will serve as the
new sub-component’s parent node.

Value

An osf_tbl_node containing the new project or component.

OSF nodes

Projects and components are both implemented as nodes on OSF. The only distinction between the
two is that a project is a top-level node, and a component must have a parent node (i.e., must be a
sub-component of another project or component). Because projects and components are function-
ally identical, osfr uses the same osf_tbl_node class to represent both.

References

1. OSF Guides: Create a Project. https://help.osf.io/article/383-creating-a-project.

2. OSF Guides: Create a Component. https://help.osf.io/article/253-create-components.

Examples

Not run:
create a new public project
project <- osf_create_project(title = "Private OSF Project", public = TRUE)

add a private component to the new project
component <- osf_create_component(project, title = "Project Data")

End(Not run)

osf_download Download files and directories from OSF

Description

Files stored on OSF can be downloaded locally by passing an osf_tbl_file that contains the files
and folders of interest. Use path to specify where the files should be downloaded, otherwise they
are downloaded to your working directory by default.

Usage

osf_download(
x,
path = NULL,
recurse = FALSE,
conflicts = "error",
verbose = FALSE,
progress = FALSE

)

https://help.osf.io/article/383-creating-a-project
https://help.osf.io/article/253-create-components

osf_download 9

Arguments

x An osf_tbl_file containing a single file or directory.

path Path pointing to a local directory where the downloaded files will be saved.
Default is to use the current working directory.

recurse Applies only to OSF directories. If TRUE, a directory is fully recursed and all
nested files and subdirectories are downloaded. Alternatively, a positive number
will determine the number of levels to recurse.

conflicts This determines what happens when a file with the same name exists at the
specified destination. Can be one of the following:

• "error" (the default): throw an error and abort the file transfer operation.
• "skip": skip the conflicting file(s) and continue transferring the remaining

files.
• "overwrite": replace the existing file with the transferred copy.

verbose Logical, indicating whether to print informative messages about interactions
with the OSF API (default FALSE).

progress Logical, if TRUE progress bars are displayed for each file transfer. Mainly useful
for transferring large files. For tracking lots of small files, setting verbose =
TRUE is more informative.

Value

The same osf_tbl_file passed to x with a new column, "local_path", containing paths to the
local files.

Implementation details

Directories are always downloaded from OSF as zip files that contain its entire contents. The logic
for handling conflicts and recursion is implemented locally, acting on these files in a temporary
location and copying them to path as needed. This creates a gotcha if you’re downloading direc-
tories with large files and assuming that setting conflicts = "skip" and/or limiting recursion will
reduce the number of files you’re downloading. In such a case, a better strategy would be to use
osf_ls_files() to list the contents of the directory and pass that output to osf_download().

A note about synchronization

While osf_download() and osf_upload() allow you to conveniently shuttle files back and forth
between OSF and your local machine, it’s important to note that they are not file synchroniza-
tion functions. In contrast to something like rsync, osf_download()/osf_upload() do not take
into account a file’s contents or modification time. Whether you’re uploading or downloading, if
conflicts = "overwrite", osfr will overwrite the existing file regardless of whether it is the more
recent copy. You have been warned.

See Also

• osf_upload() for uploading files to OSF.

• osf_ls_files() for listing files and directories on OSF.

https://rsync.samba.org

10 osf_ls_files

Examples

Not run:
download a single file
analysis_plan <- osf_retrieve_file("2ryha") %>%

osf_download()

verify the file was downloaded locally
file.exists(analysis_plan$local_path)

End(Not run)

osf_ls_files List files and directories on OSF

Description

List the files and directories in the top-level of an OSF project, component, or directory. Specify a
path to list the contents of a particular subdirectory.

Usage

osf_ls_files(
x,
path = NULL,
type = "any",
pattern = NULL,
n_max = 10,
verbose = FALSE

)

Arguments

x One of the following:

• An osf_tbl_node with a single project or component.
• An osf_tbl_file with a single directory.

path List files within the specified subdirectory path.

type Filter query by type. Set to "file" to list only files, or "folder"to list only
folders

pattern Character string used to filter for results that contain the substring "pattern" in
their name. Note: this is a fixed, case-insensitive search.

n_max Maximum number of results to return from OSF (default is 10). Set to Inf to
return all results.

verbose Logical, indicating whether to print informative messages about interactions
with the OSF API (default FALSE).

osf_ls_nodes 11

Value

An osf_tbl_file with one row for each file or directory, ordered by modification time.

See Also

osf_ls_nodes() to generate a list of projects and components.

Examples

Not run:
Retrieve the Psychology Reproducibility Project from OSF
psych_rp <- osf_retrieve_node("ezum7")

List all files and directories
osf_ls_files(psych_rp)

...only the directories
osf_ls_files(psych_rp, type = "folder")

...only PDF files
osf_ls_files(psych_rp, type = "file", pattern = "pdf")

List the contents of the first directory
osf_ls_files(psych_rp, path = "RPP_SI_Figures")

End(Not run)

osf_ls_nodes List projects or components on OSF

Description

List the projects or components associated with a user or contained in the top-level of another OSF
project or component.

Usage

osf_ls_nodes(x, pattern = NULL, n_max = 10, verbose = FALSE)

Arguments

x one of the following:

• An osf_tbl_node with a single project or component.
• An osf_tbl_user with a single OSF user.

pattern Character string used to filter for results that contain the substring "pattern" in
their name. Note: this is a fixed, case-insensitive search.

n_max Maximum number of results to return from OSF (default is 10). Set to Inf to
return all results.

12 osf_mkdir

verbose Logical, indicating whether to print informative messages about interactions
with the OSF API (default FALSE).

Value

An osf_tbl_node with one row for each OSF project or component, ordered by modification time.

See Also

osf_ls_files() to generate a list of files and files.

Examples

Not run:
List your recent projects and components
osf_retrieve_user("me") %>%

osf_ls_nodes()

List the first 10 components in the #ScanAllFish project
fish_ctscans <- osf_retrieve_node("ecmz4")
osf_ls_nodes(fish_ctscans)

Now just the components with scans of species from the Sphyrna genus
osf_ls_nodes(fish_ctscans, pattern = "Sphyrna")

End(Not run)

osf_mkdir Create directories on OSF

Description

Use osf_mkdir() to add new directories to projects, components, or nested within existing OSF
directories. If path contains multiple directory levels (e.g., "data/rawdata") the intermediate-
level directories are created automatically. If the directory you’re attempting to create already exists
on OSF it will be silently ignored and included in the output.

Usage

osf_mkdir(x, path, verbose = FALSE)

Arguments

x One of the following:

• An osf_tbl_node with a single OSF project or component.
• An osf_tbl_file containing a single directory.

path Name of the new directory or a path ending with the new directory.

verbose Logical, indicating whether to print informative messages about interactions
with the OSF API (default FALSE).

osf_mv 13

Value

An osf_tbl_file with one row containing the leaf directory specified in path.

See Also

Other OSF file operations: osf_cp(), osf_mv(), osf_rm()

Examples

Not run:
proj <- osf_create_project("Directory Example")

add directory to the top-level of the Directory Example project
data_dir <- osf_mkdir(proj, path = "data")

add a subdirectory nested within data/
osf_mkdir(data_dir, path = "rawdata")

recursively create multiple directory levels within data/
osf_mkdir(data_dir, path = "samples/pcr/qc")

End(Not run)

osf_mv Move a file or directory

Description

Use osf_mv() to move a file or directory to a new project, component, or subdirectory.

Usage

osf_mv(x, to, overwrite = FALSE, verbose = FALSE)

Arguments

x An osf_tbl_file containing a single file or directory.

to Destination where the file or directory will be moved. This can be one of the
following:

• An osf_tbl_node with a single project or component.
• An osf_tbl_file with a single directory.

overwrite Logical, if a file or directory with the same name already exists at the destination
should it be replaced with x?

verbose Logical, indicating whether to print informative messages about interactions
with the OSF API (default FALSE).

14 osf_open

Details

Note that a file (or directory) cannot be moved or copied onto itself, even if overwrite = TRUE.

Value

An osf_tbl_file containing the updated OSF file.

See Also

Other OSF file operations: osf_cp(), osf_mkdir(), osf_rm()

Examples

Not run:
Create an example file to upload to our example project
project <- osf_create_project("Flower Data")

write.csv(iris, file = "iris.csv")
data_file <- osf_upload(project,"iris.csv")

Create a new directory to move our file to
data_dir <- osf_mkdir(project, "data")

Move the file to our data directory
data_file <- osf_mv(data_file, to = data_dir)

Move our data directory to a new component
data_comp <- osf_create_component(project, title = "data", category = "data")
data_dir %>%

osf_mv(to = data_comp) %>%
osf_open()

End(Not run)

osf_open Open on OSF

Description

View a project, component, file, or user profile on OSF with your default web browser.

Usage

osf_open(x)

osf_refresh 15

Arguments

x one of the following:

• an OSF URL, or a generic string containing a GUID or Waterbutler ID.
• an osf_tbl_node with a single project or component.
• an osf_tbl_file with a single file or directory.
• an osf_tbl_user with a single OSF user.

Examples

Not run:
Navigate to a project based on its GUID
osf_open("e81xl")

You can also provide an osf_tbl subclass
crp_file <- osf_retrieve_file("ucpye")
osf_open(crp_file)

End(Not run)

osf_refresh Refresh an OSF entity

Description

Use osf_refresh() to update one or more entities in an osf_tbl() with the latest information
from OSF.

Usage

osf_refresh(x)

Arguments

x an osf_tbl.

osf_retrieve Retrieve an entity from OSF

Description

Create an osf_tbl representation of an existing OSF project, component, file, or user based on the
associated unique identifier. Usually this is a 5-character global unique identifier (GUID) but for
files or directories, it could also be an 11-character Waterbutler ID. See below for details.

16 osf_retrieve

Usage

osf_retrieve_user(id)

osf_retrieve_node(id)

osf_retrieve_file(id)

Arguments

id An OSF identifier corresponding to an OSF user, project, component, or file.
Set id = "me" to retrieve your own OSF profile.

Value

An osf_tbl_user, osf_tbl_node, or osf_tbl_file containing the corresponding OSF entity.

OSF identifiers

A 5-character GUID is assigned to every user, project, component, and file on OSF and forms the
basis for the service’s URL scheme. For example the GUID for a project accessible at https:
//osf.io/ezum7 is simply ezum7. You can learn more about GUIDs in the OSF FAQ.

An important detail is that files and directories are handled internally on OSF by another serviced
called Waterbutler, which uses 11-character identifiers. Although Waterbutler IDs are largely hid-
den from users on https://osf.io, they represent the primary method for identifying files/directories
by the OSF API. In fact, files do not receive a GUID until it is viewed directly on https://osf.io
and directories never receive a GUID. Therefore, osfr relies on Waterbutler IDs for files and direc-
tories, and always includes them (rather than GUIDs) in osf_tbl_file objects.

Retrieving OSF objects

To begin using osfr to interact with resources on OSF you must use one of the following retrieve
functions to create an osf_tbl that contains the entity of interest. Note the functions are entity-type
specific, use:

• osf_retrieve_node() to retrieve a project or component

• osf_retrieve_file() to retrieve a file or directory

• osf_retrieve_user() to retrieve a user

A note on 3rd-party storage providers

While OSF supports integration with a variety of 3rd-party cloud storage providers, osfr can cur-
rently only access files stored on the default OSF storage service. Support for additional storage
providers is planned for a future release.

https://osf.io/ezum7
https://osf.io/ezum7
https://help.osf.io/article/203-faqs
http://www.waterbutler.io/
https://osf.io
https://osf.io

osf_rm 17

Examples

Not run:
retrieve your own OSF user profile (must be authenticated, ?osf_auth)
osf_retrieve_user("me")

retrieve the Psychology Reproducibility Project (P:RP, osf.io/ezum7)
osf_retrieve_node("ezum7")

get the first figure from the P:RP
osf_retrieve_file("https://osf.io/7js8c")

End(Not run)

osf_rm Delete an entity from OSF

Description

Use osf_rm() to permanently delete a project, component, file or directory from OSF, including
any uploaded files, wiki content, or comments contained therein. Because this process is irre-
versible, osfr will first open the item in your web browser so you can verify what is about to be
deleted before proceeding.

If the project or component targeted for deletion contains sub-components, those must be deleted
first. Setting recurse = TRUE will attempt to remove the hierarchy of sub-components before delet-
ing the top-level entity.

Note: This functionality is limited to contributors with admin-level permissions.

Usage

osf_rm(x, recurse = FALSE, verbose = FALSE, check = TRUE)

Arguments

x One of the following:

• An osf_tbl_node with a single OSF project or component.
• An osf_tbl_file containing a single directory or file.

recurse Remove all sub-components before deleting the top-level entity. This only ap-
plies when deleting projects or components.

verbose Logical, indicating whether to print informative messages about interactions
with the OSF API (default FALSE).

check If FALSE deletion will proceed without opening the item or requesting verification—
this effectively removes your safety net.

Value

Invisibly returns TRUE if deletion was successful.

18 osf_tbl

See Also

Other OSF file operations: osf_cp(), osf_mkdir(), osf_mv()

Examples

Not run:
project <- osf_create_project("My Short-Lived Project")
osf_rm(project)

End(Not run)

osf_tbl OSF Tibbles

Description

Items retrieved from OSF are represented as osf_tbl objects, specialized data frames based on the
tibble class. See below for additional details.

Details

Each row of an osf_tbl represents a single OSF entity. This could be a user, project, component,
directory, or file. An osf_tbl must include the following 3 columns:

1. name: indicates the name or title of the entity.

2. id: the unique identifier assigned by OSF.

3. meta: a list-column that stores the processed response returned by OSF’s API. See the Meta
column section below for more information.

Subclasses

osf_tbl is the parent class of 3 subclasses that are used to represent each of OSF’s main entities:

1. osf_tbl_user for users.

2. osf_tbl_file for files and directories.

3. osf_tbl_node for projects and components.

OSF nodes

Projects and components are both implemented as nodes on OSF. The only distinction between the
two is that a project is a top-level node, and a component must have a parent node (i.e., must be a
sub-component of another project or component). Because projects and components are function-
ally identical, osfr uses the same osf_tbl_node class to represent both.

osf_upload 19

Meta column

The meta column contains all of the information returned from OSF’s API for a single entity,
structured as a named list with 3 elements:

1. attributes contains metadata about the entity (e.g., names, descriptions, tags, etc).

2. links contains urls to API endpoints with alternative representations of the entity or actions
that may be performed on the entity.

3. relationships contains URLs to other entities with relationships to the entity (e.g., collabo-
rators attached to a project).

This information is critical for osfr’s internal functions and should not be altered by users. For
even more information about these elements, see OSF’s API documentation.

Acknowledgments

Our implementation of the osf_tbl class is based on dribble objects from the googledrive pack-
age.

osf_upload Upload files to OSF

Description

Upload local files to a project, component, or directory on OSF.

Usage

osf_upload(
x,
path,
recurse = FALSE,
conflicts = "error",
progress = FALSE,
verbose = FALSE

)

Arguments

x The upload destination on OSF. Can be one of the following:

• An osf_tbl_node with a single project or component.
• An osf_tbl_file with a single directory.

path A character vector of paths pointing to existing local files and/directories.

recurse If TRUE, fully recurse directories included in path. You can also control the
number of levels to recurse by specifying a positive number.

conflicts This determines what happens when a file with the same name exists at the
specified destination. Can be one of the following:

https://developer.osf.io/#tag/Entities-and-Entity-Collections
https://googledrive.tidyverse.org

20 osf_upload

• "error" (the default): throw an error and abort the file transfer operation.
• "skip": skip the conflicting file(s) and continue transferring the remaining

files.
• "overwrite": replace the existing file with the transferred copy.

progress Logical, if TRUE progress bars are displayed for each file transfer. Mainly useful
for transferring large files. For tracking lots of small files, setting verbose =
TRUE is more informative.

verbose Logical, indicating whether to print informative messages about interactions
with the OSF API (default FALSE).

Value

An osf_tbl_file containing the uploaded files and directories that were directly specified in path.

File and directory paths

The x argument indicates where on OSF the files will be uploaded (i.e., the destination). The path
argument indicates what will be uploaded, which can include a combination of files and directories.

When path points to a local file, the file is uploaded to the root of the specified OSF destination,
regardless of where it’s on your local machine (i.e., the intermediate paths are not preserved). For
example, the following would would upload both a.txt and b.txt to the root of my_proj:

osf_upload(my_proj, c("a.txt", "subdir/b.txt"))`

When path points to a local directory, a corresponding directory will be created at the root of the
OSF destination, x, and any files within the local directory are uploaded to the new OSF directory.
Therefore, we could maintain the directory structure in the above example by passing b.txt’s parent
directory to path instead of the file itself:

osf_upload(my_proj, c("a.txt", "subdir2"))

Likewise, osf_upload(my_proj, path = ".") will upload your entire current working directory to
the specified OSF destination.

Uploading to subdirectories

In order to upload directly to an existing OSF directory you would first need to retrieve the directory
as an osf_tbl_file. This can be accomplished by passing the directory’s unique identifier to
osf_retrieve_file(), or, if you don’t have the ID handy, you can use osf_ls_files() to retrieve
the directory by name.

search for the 'rawdata' subdirectory within top-level 'data' directory
target_dir <- osf_ls_files(my_proj, path = "data", pattern = "rawdata")
upload 'a.txt' to data/rawdata/ on OSF
osf_upload(target_dir, path = "a.txt")

osf_upload 21

A note about synchronization

While osf_download() and osf_upload() allow you to conveniently shuttle files back and forth
between OSF and your local machine, it’s important to note that they are not file synchroniza-
tion functions. In contrast to something like rsync, osf_download()/osf_upload() do not take
into account a file’s contents or modification time. Whether you’re uploading or downloading, if
conflicts = "overwrite", osfr will overwrite the existing file regardless of whether it is the more
recent copy. You have been warned.

See Also

• osf_download() for downloading files and directories from OSF.

• osf_ls_files() for listing files and directories on OSF.

Examples

Not run:
Create an example file to upload to our example project
write.csv(iris, file = "iris.csv")
project <- osf_create_project("Flower Data")

Upload the first version
osf_upload(project,"iris.csv")

Modify the data file, upload version 2, and view it on OSF
write.csv(subset(iris, Species != "setosa"), file = "iris.csv")
project %>%

osf_upload("iris.csv", conflicts = "overwrite") %>%
osf_open()

End(Not run)

https://rsync.samba.org

Index

∗ OSF file operations
osf_cp, 5
osf_mkdir, 12
osf_mv, 13
osf_rm, 17

as_id, 3

osf_auth, 4
osf_cp, 5, 13, 14, 18
osf_create, 7
osf_create_component (osf_create), 7
osf_create_project (osf_create), 7
osf_download, 8
osf_download(), 21
osf_ls_files, 10
osf_ls_files(), 9, 12, 20, 21
osf_ls_nodes, 11
osf_ls_nodes(), 11
osf_mkdir, 6, 12, 14, 18
osf_mv, 6, 13, 13, 18
osf_open, 14
osf_refresh, 15
osf_retrieve, 15
osf_retrieve_file (osf_retrieve), 15
osf_retrieve_file(), 20
osf_retrieve_node (osf_retrieve), 15
osf_retrieve_user (osf_retrieve), 15
osf_rm, 6, 13, 14, 17
osf_tbl, 15, 16, 18
osf_tbl(), 15
osf_tbl_file, 6, 8–17, 19, 20
osf_tbl_file (osf_tbl), 18
osf_tbl_node, 6–8, 10–13, 15–19
osf_tbl_node (osf_tbl), 18
osf_tbl_user, 11, 15, 16
osf_tbl_user (osf_tbl), 18
osf_upload, 19
osf_upload(), 9
osfr (osfr-package), 2

osfr-package, 2

tibble, 18

22

	osfr-package
	as_id
	osf_auth
	osf_cp
	osf_create
	osf_download
	osf_ls_files
	osf_ls_nodes
	osf_mkdir
	osf_mv
	osf_open
	osf_refresh
	osf_retrieve
	osf_rm
	osf_tbl
	osf_upload
	Index

