
Package: osmextract (via r-universe)
July 10, 2024

Type Package

Title Download and Import Open Street Map Data Extracts

Version 0.5.1.900

Description Match, download, convert and import Open Street Map data
extracts obtained from several providers.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

Roxygen list(markdown = TRUE)

URL https://docs.ropensci.org/osmextract/,

https://github.com/ropensci/osmextract

BugReports https://github.com/ropensci/osmextract/issues

Depends R (>= 3.6.0)

Imports sf (>= 0.8.1), utils, tools, httr, jsonlite, evaluate (>=
0.23)

Suggests testthat (>= 3.0.2), knitr, rmarkdown, covr, withr

VignetteBuilder knitr

Language en-GB

Config/testthat/edition 3

Config/build/copy-method link

Remotes r-lib/evaluate

Repository https://ropensci.r-universe.dev

RemoteUrl https://github.com/ropensci/osmextract

RemoteRef master

RemoteSha c5e6f2c265e0d1c1a340cebf3cd428815d237409

1

https://docs.ropensci.org/osmextract/
https://github.com/ropensci/osmextract
https://github.com/ropensci/osmextract/issues

2 bbbike_zones

Contents
bbbike_zones . 2
geofabrik_zones . 3
oe_clean . 4
oe_download . 5
oe_download_directory . 7
oe_find . 7
oe_get . 9
oe_get_boundary . 14
oe_get_keys . 15
oe_get_network . 19
oe_match . 21
oe_match_pattern . 25
oe_providers . 26
oe_read . 27
oe_search . 30
oe_update . 31
oe_vectortranslate . 32
openstreetmap_fr_zones . 36
read_poly . 37
test_zones . 38

Index 39

bbbike_zones An sf object of geographical zones taken from bbbike.org

Description

Start bicycle routing for... everywhere!

Usage

bbbike_zones

Format

An sf object with 237 rows and 6 columns:

name The, usually English, long-form name of the city.

pbf Link to the latest .osm.pbf file for this region.

pbf_file_size Size of the pbf file in bytes.

id A unique identifier. It contains letters, numbers and potentially the characters "-" and "/".

level An integer code always equal to 3 (since the bbbike data represent non-hierarchical geo-
graphical zones). This is used only for matching operations in case of spatial input. The oe_*
functions will select the geographical area closest to the input place with the highest "level".
See geofabrik_zones for an example of a (proper) hierarchical structure.

geofabrik_zones 3

geometry The sfg for that geographical region, rectangular. See also oe_get_boundary() to
extract the proper geographical boundaries.

Details

An sf object containing the URLs, names, and file_size of the OSM extracts stored at https:
//download.bbbike.org/osm/bbbike/.

Source

https://download.bbbike.org/osm/

See Also

Other provider’s-database: geofabrik_zones, openstreetmap_fr_zones

geofabrik_zones An sf object of geographical zones taken from geofabrik.de

Description

An sf object containing the URLs, names and file-sizes of the OSM extracts stored at https:
//download.geofabrik.de/. You can read more details about these data at the following link:
https://download.geofabrik.de/technical.html.

Usage

geofabrik_zones

Format

An sf object with 476 rows and 9 columns:

id A unique identifier. It contains letters, numbers and potentially the characters "-" and "/".

name The, usually English, long-form name of the area.

parent The identifier of the next larger excerpts that contains this one, if present.

level An integer code between 1 and 4. If level = 1, then the zone corresponds to one of the
continents (Africa, Antarctica, Asia, Australia and Oceania, Central America, Europe, North
America, and South America) or the Russian Federation. If level = 2, then the zone corre-
sponds to the continent’s subregions (i.e. the countries such as Italy, Great Britain, Spain,
USA, Mexico, Belize, Morocco, Peru and so on). There are also some exceptions that corre-
spond to the Special Sub Regions (according to the Geofabrik definition), which are: South
Africa (includes Lesotho), Alps, Britain and Ireland, Germany + Austria + Switzerland, US
Midwest, US Northeast, US Pacific, US South, US West, and all US states. Level = 3L corre-
sponds to the subregions of each state (or each level 2 zone). For example, the West Yorkshire,
which is a subregion of England, is a level 3 zone. Finally, level = 4 correspond to the subre-
gions of the third level and it is mainly related to some small areas in Germany. This field is
used only for matching operations in case of spatial input.

https://download.bbbike.org/osm/bbbike/
https://download.bbbike.org/osm/bbbike/
https://download.bbbike.org/osm/
https://download.geofabrik.de/
https://download.geofabrik.de/
https://download.geofabrik.de/technical.html

4 oe_clean

iso3166-1_alpha2 A character vector of two-letter ISO3166-1 codes. This will be set on the small-
est extract that still fully (or mostly) contains the entity with that code; e.g. the code "DE" will
be given for the Germany extract and not for Europe even though Europe contains Germany.
If an extract covers several countries and no per-country extracts are available (e.g. Israel and
Palestine), then several ISO codes will be given (such as "PS IL" for "Palestine and Israel").

iso3166_2 A character vector of usually five-character ISO3166-2 codes. The same rules as above
apply. Some entities have both an iso3166-1 and iso3166-2 code. For example, the iso3166_2
code of each US State is "US - " plus the code of the state.

pbf Link to the latest .osm.pbf file for this region.

pbf_file_size Size of the .pbf file in bytes.

geometry The sfg for that geographical region. These are not the country boundaries, but a buffer
around countries. Check oe_get_boundary() to extract the geographical boundaries.

Source

https://download.geofabrik.de/

See Also

Other provider’s-database: bbbike_zones, openstreetmap_fr_zones

oe_clean Clean download directory

Description

This functions is a wrapper around unlink() that can be used to delete all .osm.pbf and .gpkg
files in a given directory.

Usage

oe_clean(download_directory = oe_download_directory(), force = FALSE)

Arguments

download_directory

The directory where the .osm.pbf and .gpkg files are saved. Default value is
oe_download_directory().

force Internal option. It can be used to skip the checks run at the beginning of the
function and force the removal of all pbf/gpkg files.

Value

The same as unlink().

https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/ISO_3166-2
https://download.geofabrik.de/

oe_download 5

Examples

Warning: the following removes all files in oe_download_directory()
Not run:
oe_clean()
End(Not run)

oe_download Download a file given a url

Description

This function is used to download a file given a URL. It focuses on OSM extracts with .osm.pbf
format stored by one of the providers implemented in the package. The URL is specified through
the parameter file_url.

Usage

oe_download(
file_url,
provider = NULL,
file_basename = basename(file_url),
download_directory = oe_download_directory(),
file_size = NA,
force_download = FALSE,
max_file_size = 5e+08,
quiet = FALSE

)

Arguments

file_url A URL pointing to a .osm.pbf file that should be downloaded.

provider Which provider stores the file? If NULL (the default), it may be inferred from the
URL, but it must be specified for non-standard cases. See details and examples.

file_basename The basename of the file. The default behaviour is to auto-generate it from the
URL using basename().

download_directory

Where to download the file containing the OSM data? By default this is equal to
oe_download_directory(), which is equal to tempdir() and it changes each
time you restart R. You can set a persistent download_directory by adding
the following to your .Renviron file (e.g. with edit_r_environ function in
usethis package): OSMEXT_DOWNLOAD_DIRECTORY=/path/to/osm/data.

file_size How big is the file? Optional. NA by default. If it’s bigger than max_file_size
and the function is run in interactive mode, then an interactive menu is displayed,
asking for permission for downloading the file.

force_download Should the .osm.pbf file be updated if it has already been downloaded? FALSE
by default. This parameter is used to update old .osm.pbf files.

6 oe_download

max_file_size The maximum file size to download without asking in interactive mode. Default:
5e+8, half a gigabyte.

quiet Boolean. If FALSE, the function prints informative messages. Starting from sf
version 0.9.6, if quiet is equal to FALSE, then vectortranslate operations will
display a progress bar.

Details

This function runs several checks before actually downloading a new file to avoid overloading the
OSM providers. The first step is the definition of the file’s path associated to the input file_url.
The path is created by pasting together the download_directory, the name of chosen provider
(which may be inferred from the URL) and the basename() of the URL. For example, if file_url
is equal to "https://download.geofabrik.de/europe/italy-latest.osm.pbf", and download_directory
= "/tmp", then the path is built as "/tmp/geofabrik_italy-latest.osm.pbf". Thereafter, the
function checks the existence of that file and, if it founds it, then it returns the path. The parameter
force_download is used to modify this behaviour. If there is no file associated with the new path,
then the function downloads a new file using download.file() with mode = "wb", and, again, it
returns the path.

Value

A character string representing the file’s path.

Examples

(its_match = oe_match("ITS Leeds", quiet = TRUE))

Not run:
oe_download(

file_url = its_match$url,
file_size = its_match$file_size,
provider = "test",
download_directory = tempdir()

)
iow_url = oe_match("Isle of Wight")
oe_download(

file_url = iow_url$url,
file_size = iow_url$file_size,
download_directory = tempdir()

)
Sucre_url = oe_match("Sucre", provider = "bbbike")
oe_download(

file_url = Sucre_url$url,
file_size = Sucre_url$file_size,
download_directory = tempdir()

)
End(Not run)

https://r-spatial.github.io/sf/news/index.html#version-0-9-6-2020-09-13

oe_download_directory 7

oe_download_directory Return the download directory used by the package

Description

By default, the download directory is equal to tempdir(). You can set a persistent download
directory by adding the following command to your .Renviron file (e.g. with edit_r_environ
function in usethis package): OSMEXT_DOWNLOAD_DIRECTORY=/path/to/osm/data.

Usage

oe_download_directory()

Value

A character vector representing the path for the download directory used by the package.

Examples

oe_download_directory()

oe_find Get the path of .pbf and .gpkg files associated with an input OSM ex-
tract

Description

This function takes a place name and returns the path of .pbf/.gpkg files associated with it.

Usage

oe_find(
place,
provider = "geofabrik",
download_directory = oe_download_directory(),
download_if_missing = FALSE,
return_pbf = TRUE,
return_gpkg = TRUE,
quiet = FALSE,
...

)

8 oe_find

Arguments

place Description of the geographical area that should be matched with a .osm.pbf
file. Can be either a length-1 character vector, an sf/sfc/bbox object, or a nu-
meric vector of coordinates with length 2. In the last case, it is assumed that the
EPSG code is 4326 specified as c(LON, LAT), while you can use any CRS with
sf/sfc/bbox objects. See Details and Examples in oe_match().

provider Which provider should be used to download the data? Available providers can
be found with the following command: oe_providers(). For oe_get() and
oe_match(), if place is equal to ITS Leeds, then provider is set equal to
test. This is just for simple examples and internal tests.

download_directory

Directory where the files downloaded by osmextract are stored. By default it is
equal to oe_download_directory().

download_if_missing

Attempt to download the file if it cannot be found? FALSE by default.

return_pbf Logical of length 1. If TRUE, the function returns the path of the pbf file that
matches the input place.

return_gpkg Logical of length 1. If TRUE, the function returns the path of the gpkg file that
matches the input place.

quiet Boolean. If FALSE, the function prints informative messages. Starting from sf
version 0.9.6, if quiet is equal to FALSE, then vectortranslate operations will
display a progress bar.

... Extra arguments that are passed to oe_match() and oe_get(). Please note that
you cannot modify the argument download_only.

Details

The matching between the existing files (saved in the directory specified by download_directory
parameter) and the input place is performed using list.files(), setting the pattern argument
equal to the basename of the URL associated to the input place. For example, if you specify place
= "Isle of Wight", then the input is matched (via oe_match()) with the URL of Isle of Wight’s
.osm.pbf file, and the files are selected using a pattern equal to the basename of that URL.

If there is no file in the download_directory that can be matched with the basename of the URL
and download_if_missing parameter is equal to TRUE, then the function tries to download and read
a new file from the chosen provider (geofabrik is the default provider). If download_if_missing
parameter is equal to FALSE (default value), then the function stops with an error.

By default, this function returns the path of .pbf and .gpkg files associated with the input place (if
any). You can exclude one of the two formats setting the arguments return_pbf or return_gpkg
to FALSE.

Value

A character vector of length one (or two) representing the path(s) of the .pbf/.gpkg files associated
with the input place. The files are sorted in alphabetical order which implies that if both formats
are present in the download_directory, then the .gpkg file is returned first.

https://r-spatial.github.io/sf/news/index.html#version-0-9-6-2020-09-13

oe_get 9

Examples

Copy the ITS file to tempdir() to make sure that the examples do not
require internet connection. You can skip the next 4 lines (and start
directly with oe_get_keys) when running the examples locally.

res = file.copy(
from = system.file("its-example.osm.pbf", package = "osmextract"),
to = file.path(tempdir(), "test_its-example.osm.pbf"),
overwrite = TRUE

)
res = oe_get("ITS Leeds", quiet = TRUE, download_directory = tempdir())
oe_find("ITS Leeds", provider = "test", download_directory = tempdir())
oe_find(

"ITS Leeds", provider = "test",
download_directory = tempdir(), return_gpkg = FALSE

)

Not run:
oe_find("Isle of Wight", download_directory = tempdir())
oe_find("Malta", download_if_missing = TRUE, download_directory = tempdir())
oe_find(

"Leeds",
provider = "bbbike",
download_if_missing = TRUE,
download_directory = tempdir(),
return_pbf = FALSE

)
End(Not run)

Remove .pbf and .gpkg files in tempdir
oe_clean(tempdir())

oe_get Find, download, translate and read OSM extracts from several
providers

Description

This function is used to find, download, translate and read OSM extracts obtained from several
providers. It is a wrapper around oe_match() and oe_read(). Check the introductory vignette,
the examples and the help pages of the wrapped functions to understand the details behind all
parameters.

Usage

oe_get(
place,
layer = "lines",
...,

10 oe_get

provider = "geofabrik",
match_by = "name",
max_string_dist = 1,
level = NULL,
download_directory = oe_download_directory(),
force_download = FALSE,
max_file_size = 5e+08,
vectortranslate_options = NULL,
osmconf_ini = NULL,
extra_tags = NULL,
force_vectortranslate = FALSE,
boundary = NULL,
boundary_type = c("spat", "clipsrc"),
download_only = FALSE,
skip_vectortranslate = FALSE,
never_skip_vectortranslate = FALSE,
quiet = FALSE

)

Arguments

place Description of the geographical area that should be matched with a .osm.pbf
file. Can be either a length-1 character vector, an sf/sfc/bbox object, or a nu-
meric vector of coordinates with length 2. In the last case, it is assumed that the
EPSG code is 4326 specified as c(LON, LAT), while you can use any CRS with
sf/sfc/bbox objects. See Details and Examples in oe_match().

layer Which layer should be read in? Typically points, lines (the default), multilinestrings,
multipolygons or other_relations. If you specify an ad-hoc query using the
argument query (see introductory vignette and examples), then oe_get() and
oe_read() will read the layer specified in the query and ignore layer. See also
#122.

... (Named) arguments that will be passed to sf::st_read(), like query, wkt_filter
or stringsAsFactors. Check the introductory vignette to understand how to
create your own (SQL-like) queries.

provider Which provider should be used to download the data? Available providers can
be found with the following command: oe_providers(). For oe_get() and
oe_match(), if place is equal to ITS Leeds, then provider is set equal to
test. This is just for simple examples and internal tests.

match_by Which column of the provider’s database should be used for matching the in-
put place with a .osm.pbf file? The default is "name". Check Details and
Examples in oe_match() to understand how this parameter works. Ignored if
place is not a character vector since the matching is performed through a spatial
operation.

max_string_dist

Numerical value greater or equal than 0. What is the maximum distance in fuzzy
matching (i.e. Approximate String Distance, see adist()) between input place
and match_by column to tolerate before testing alternative providers or looking

https://github.com/ropensci/osmextract/issues/122

oe_get 11

for geographical matching with Nominatim API? This parameter is set equal to
0 if match_by is equal to iso3166_1_alpha2 or iso3166_2. Check Details and
Examples in oe_match() to understand why this parameter is important. Ig-
nored if place is not a character vector since the matching is performed through
a spatial operation.

level An integer representing the desired hierarchical level in case of spatial match-
ing. For the geofabrik provider, for example, 1 corresponds with continent-
level datasets, 2 for countries, 3 corresponds to regions and 4 to subregions.
Hence, we could approximately say that smaller administrative units correspond
to bigger levels. If NULL, the default, the oe_* functions will select the highest
available level. See Details and Examples in oe_match().

download_directory

Where to download the file containing the OSM data? By default this is equal to
oe_download_directory(), which is equal to tempdir() and it changes each
time you restart R. You can set a persistent download_directory by adding
the following to your .Renviron file (e.g. with edit_r_environ function in
usethis package): OSMEXT_DOWNLOAD_DIRECTORY=/path/to/osm/data.

force_download Should the .osm.pbf file be updated if it has already been downloaded? FALSE
by default. This parameter is used to update old .osm.pbf files.

max_file_size The maximum file size to download without asking in interactive mode. Default:
5e+8, half a gigabyte.

vectortranslate_options

Options passed to the sf::gdal_utils() argument options. Set by default.
Check details in the introductory vignette and the help page of oe_vectortranslate().

osmconf_ini The configuration file. See documentation at gdal.org. Check details in the intro-
ductory vignette and the help page of oe_vectortranslate(). Set by default.

extra_tags Which additional columns, corresponding to OSM tags, should be in the result-
ing dataset? NULL by default. Check the introductory vignette and the help pages
of oe_vectortranslate() and oe_get_keys(). Ignored when osmconf_ini
is not NULL.

force_vectortranslate

Boolean. Force the original .pbf file to be translated into a .gpkg file, even
if a .gpkg with the same name already exists? FALSE by default. If tags in
extra_tags match data in previously translated .gpkg files no translation oc-
curs (see #173 for details). Check the introductory vignette and the help page of
oe_vectortranslate().

boundary An sf/sfc/bbox object that will be used to create a spatial filter during the vec-
tortranslate operations. The type of filter can be chosen using the argument
boundary_type.

boundary_type A character vector of length 1 specifying the type of spatial filter. The spat filter
selects only those features that intersect a given area, while clipsrc also clips
the geometries. Check the examples and also here for more details.

download_only Boolean. If TRUE, then the function only returns the path where the matched file
is stored, instead of reading it. FALSE by default.

skip_vectortranslate

Boolean. If TRUE, then the function skips all vectortranslate operations and it
reads (or simply returns the path) of the .osm.pbf file. FALSE by default.

https://gdal.org/drivers/vector/osm.html
https://github.com/ropensci/osmextract/issues/173
https://gdal.org/programs/ogr2ogr.html

12 oe_get

never_skip_vectortranslate

Boolean. This is used in case the user passed its own .ini file or vectortranslate
options (since, in those case, it’s too difficult to determine if an existing .gpkg
file was generated following the same options.)

quiet Boolean. If FALSE, the function prints informative messages. Starting from sf
version 0.9.6, if quiet is equal to FALSE, then vectortranslate operations will
display a progress bar.

Details

The algorithm that we use for importing an OSM extract data into R is divided into 4 steps: 1)
match the input place with the url of a .pbf file; 2) download the .pbf file; 3) convert it into .gpkg
format and 4) read-in the .gpkg file. The function oe_match() is used to perform the first operation
and the function oe_read() (which is a wrapper around oe_download(), oe_vectortranslate()
and sf::st_read()) performs the other three operations.

Value

An sf object.

See Also

oe_match(), oe_download(), oe_vectortranslate(), and oe_read().

Examples

Copy ITS file to tempdir so that the examples do not require internet
connection. You can skip the next 4 lines when running the examples
locally.

its_pbf = file.path(tempdir(), "test_its-example.osm.pbf")
file.copy(

from = system.file("its-example.osm.pbf", package = "osmextract"),
to = its_pbf,
overwrite = TRUE

)

Match, download (not really) and convert OSM extracts associated to a simple test.
its = oe_get("ITS Leeds", download_directory = tempdir())
class(its)
unique(sf::st_geometry_type(its))

Get another layer from ITS Leeds extract
its_points = oe_get("ITS Leeds", layer = "points", download_directory = tempdir())
unique(sf::st_geometry_type(its_points))

Get the .osm.pbf and .gpkg files paths
oe_get(

"ITS Leeds", download_only = TRUE, quiet = TRUE,
download_directory = tempdir()

)

https://r-spatial.github.io/sf/news/index.html#version-0-9-6-2020-09-13

oe_get 13

oe_get(
"ITS Leeds", download_only = TRUE, skip_vectortranslate = TRUE,
quiet = TRUE, download_directory = tempdir()

)
See also ?oe_find()

Add additional tags
its_with_oneway = oe_get(

"ITS Leeds", extra_tags = "oneway",
download_directory = tempdir()

)
names(its_with_oneway)
table(its_with_oneway$oneway, useNA = "ifany")

Use the query argument to get only oneway streets:
q = "SELECT * FROM 'lines' WHERE oneway == 'yes'"
its_oneway = oe_get("ITS Leeds", query = q, download_directory = tempdir())
its_oneway[, c(1, 3, 9)]

Apply a spatial filter during the vectortranslate operations
its_poly = sf::st_sfc(

sf::st_polygon(
list(rbind(

c(-1.55577, 53.80850),
c(-1.55787, 53.80926),
c(-1.56096, 53.80891),
c(-1.56096, 53.80736),
c(-1.55675, 53.80658),
c(-1.55495, 53.80749),
c(-1.55577, 53.80850)

))
),
crs = 4326

)
its_spat = oe_get("ITS Leeds", boundary = its_poly, download_directory = tempdir())
its_clipped = oe_get(

"ITS Leeds", boundary = its_poly, boundary_type = "clipsrc",
quiet = TRUE, download_directory = tempdir()

)

plot(sf::st_geometry(its), reset = FALSE, col = "lightgrey")
plot(sf::st_boundary(its_poly), col = "black", add = TRUE)
plot(sf::st_boundary(sf::st_as_sfc(sf::st_bbox(its_poly))), col = "black", add = TRUE)
plot(sf::st_geometry(its_spat), add = TRUE, col = "darkred")
plot(sf::st_geometry(its_clipped), add = TRUE, col = "orange")

More complex examples
Not run:
west_yorkshire = oe_get("West Yorkshire")
If you run it again, the function will not download the file
or convert it again
west_yorkshire = oe_get("West Yorkshire")
Match with place name

14 oe_get_boundary

oe_get("Milan") # Warning: the .pbf file is 400MB
oe_get("Vatican City") # Check all providers
oe_get("Zurich") # Use Nominatim API for geolocating places

Match with coordinates (any EPSG)
milan_duomo = sf::st_sfc(sf::st_point(c(1514924, 5034552)), crs = 3003)
oe_get(milan_duomo, quiet = FALSE) # Warning: the .pbf file is 400MB
Match with numeric coordinates (EPSG = 4326)
oe_match(c(9.1916, 45.4650), quiet = FALSE)

Check also alternative providers
baku = oe_get(place = "Baku")

Other examples:
oe_get("RU", match_by = "iso3166_1_alpha2", quiet = FALSE)
The following example mimics read_sf
oe_get("Andora", stringsAsFactors = FALSE, quiet = TRUE, as_tibble = TRUE)
End(Not run)

Remove .pbf and .gpkg files in tempdir
oe_clean(tempdir())

oe_get_boundary Get the administrative boundary for a given place

Description

This function can be used to obtain polygon/multipolygon objects representing an administrative
boundary. The objects are extracted from the multipolygons layer of a given OSM extract.

Usage

oe_get_boundary(place, name = place, exact = TRUE, ...)

Arguments

place Description of the geographical area that should be matched with a .osm.pbf
file. Can be either a length-1 character vector, an sf/sfc/bbox object, or a nu-
meric vector of coordinates with length 2. In the last case, it is assumed that the
EPSG code is 4326 specified as c(LON, LAT), while you can use any CRS with
sf/sfc/bbox objects. See Details and Examples in oe_match().

name A character vector of length 1 that describes the relevant area. By default, this is
equal to place, but this parameter can be tuned to obtain more granular results
starting from the same OSM extract. See examples. It must be always set when
the place argument is specified using numeric or spatial objects.

exact Boolean of length 1. If TRUE, then the function returns only those features where
the field name is exactly equal to name. If FALSE, it performs a (case-sensitive)
pattern matching.

... Further arguments (e.g. quiet or force_vectortranslate) that are passed to
oe_get().

oe_get_keys 15

Details

The function may return an empty result when the corresponding GPKG file already exists and con-
tains partial results. In that case, you can try running the function setting never_skip_vectortranslate
= TRUE.

Value

An sf object

Examples

Not run:
library(sf)
my_cols = sf.colors(5, categorical = TRUE)
gabon = oe_get_boundary("Gabon", quiet = TRUE) # country
libreville = oe_get_boundary("Gabon", "Libreville", quiet = TRUE) # capital

opar = par(mar = rep(0, 4))
plot(st_geometry(st_boundary(gabon)), reset = FALSE, col = "grey")
plot(st_geometry(libreville), add = TRUE, col = my_cols[1])

Exact match
komo = oe_get_boundary("Gabon", "Komo", quiet = TRUE)
Pattern matching
komo_pt = oe_get_boundary("Gabon", "Komo", exact = FALSE, quiet = TRUE)
plot(st_geometry(komo), add = TRUE, col = my_cols[2])
plot(st_geometry(komo_pt), add = TRUE, col = my_cols[3:5])
par(opar)

Get all boundaries
(oe_get_boundary("Gabon", name = "%", exact = FALSE, quiet = TRUE)[, 1:2])

If the basic approach doesn't work, i.e.
oe_get_boundary("Leeds")

try to consider larger regions, i.e.
oe_get_boundary("West Yorkshire", "Leeds")

End(Not run)

oe_get_keys Return keys and (optionally) values stored in "other_tags" column

Description

This function returns the OSM keys and (optionally) the values stored in the other_tags field. See
Details. In both cases, the keys are sorted according to the number of occurrences, which means
that the most common keys are stored first.

16 oe_get_keys

Usage

oe_get_keys(
zone,
layer = "lines",
values = FALSE,
which_keys = NULL,
download_directory = oe_download_directory()

)

Default S3 method:
oe_get_keys(
zone,
layer = "lines",
values = FALSE,
which_keys = NULL,
download_directory = oe_download_directory()

)

S3 method for class 'character'
oe_get_keys(
zone,
layer = "lines",
values = FALSE,
which_keys = NULL,
download_directory = oe_download_directory()

)

S3 method for class 'sf'
oe_get_keys(
zone,
layer = "lines",
values = FALSE,
which_keys = NULL,
download_directory = oe_download_directory()

)

S3 method for class 'oe_key_values_list'
print(x, n = getOption("oe_max_print_keys", 10L), ...)

Arguments

zone An sf object with an other_tags field or a character vector (of length 1) that
can be linked to or pointing to a .osm.pbf or .gpkg file with an other_tags
field. Character vectors are linked to .osm.pbf files using oe_find().

layer Which layer should be read in? Typically points, lines (the default), multilinestrings,
multipolygons or other_relations. If you specify an ad-hoc query using the
argument query (see introductory vignette and examples), then oe_get() and
oe_read() will read the layer specified in the query and ignore layer. See also

oe_get_keys 17

#122.

values Logical. If TRUE, then function returns the keys and the corresponding values,
otherwise only the keys. Defaults to FALSE.

which_keys Character vector used to subset only some keys and corresponding values. Ig-
nored if values is FALSE. See examples.

download_directory

Path of the directory that stores the .osm.pbf files. Only relevant when zone
is as a character vector that must be matched to a file via oe_find(). Ignored
unless zone is a character vector.

x object of class oe_key_values_list

n Maximum number of keys (and corresponding values) to print; can be set glob-
ally by options(oe_max_print_keys=...). Default value is 10.

... Ignored.

Details

OSM data are typically documented using several tags, i.e. pairs of two items, namely a key and a
value. The conversion between .osm.pbf and .gpkg formats is governed by a CONFIG file that lists
which tags must be explicitly added to the .gpkg file. All the other keys are automatically stored
using an other_tags field with a syntax compatible with the PostgreSQL HSTORE type. See here
for more details.

When the argument values is TRUE, then the function returns a named list of class oe_key_values_list
that, for each key, summarises the corresponding values. The key-value pairs are stored using the
following format: list(key1 = c("value1", "value1", "value2", ...), key2 = c("value1", ...) ...).
We decided to implement an ad-hoc method for printing objects of class oe_key_values_list us-
ing the following structure:

key1 = {#value1 = n1; #value2 = n2; #value3 = n3,
...} key2 = {#value1 = n1; #value2 = n2; ...} key3 = {#value1 = n1} ...

where n1 denotes the number of times that value1 is repeated, n2 denotes the number of times that
value2 is repeated and so on. Also the values are listed according to the number of occurrences in
decreasing order. By default, the function prints only the ten most common keys, but the number
can be adjusted using the option oe_max_print_keys.

Finally, the hstore_get_value() function can be used inside the query argument in oe_get() to
extract one particular tag from an existing file. Check the introductory vignette and see examples.

Value

If the argument values is FALSE (the default), then the function returns a character vector with
the names of all keys stored in the other_tags field. If values is TRUE, then the function returns
named list which stores all keys and the corresponding values. In the latter case, the returned object
has class oe_key_values_list and we defined an ad-hoc printing method. See Details.

See Also

oe_vectortranslate()

https://github.com/ropensci/osmextract/issues/122
https://wiki.openstreetmap.org/wiki/Tags
https://gdal.org/drivers/vector/osm.html#driver-capabilities

18 oe_get_keys

Examples

Copy the ITS file to tempdir() to make sure that the examples do not
require internet connection. You can skip the next 4 lines (and start
directly with oe_get_keys) when running the examples locally.

its_pbf = file.path(tempdir(), "test_its-example.osm.pbf")
file.copy(

from = system.file("its-example.osm.pbf", package = "osmextract"),
to = its_pbf,
overwrite = TRUE

)

Get keys
oe_get_keys("ITS Leeds", download_directory = tempdir())

Get keys and values
oe_get_keys("ITS Leeds", values = TRUE, download_directory = tempdir())

Subset some keys
oe_get_keys(

"ITS Leeds", values = TRUE, which_keys = c("surface", "lanes"),
download_directory = tempdir()

)

Print all (non-NA) values for a given set of keys
res = oe_get_keys("ITS Leeds", values = TRUE, download_directory = tempdir())
res["surface"]

Get keys from an existing sf object
its = oe_get("ITS Leeds", download_directory = tempdir())
oe_get_keys(its, values = TRUE)

Get keys from a character vector pointing to a file (might be faster than
reading the complete file and then filter it)
its_path = oe_get(

"ITS Leeds", download_only = TRUE,
download_directory = tempdir(), quiet = TRUE

)
oe_get_keys(its_path, values = TRUE)

Add a key to an existing .gpkg file without repeating the
vectortranslate operations
its = oe_get("ITS Leeds", download_directory = tempdir())
colnames(its)
its_extra = oe_read(

its_path,
query = "SELECT *, hstore_get_value(other_tags, 'oneway') AS oneway FROM lines",
quiet = TRUE

)
colnames(its_extra)

The following fails since there is no points layer in the .gpkg file

oe_get_network 19

Not run:
oe_get_keys(its_path, layer = "points")
End(Not run)

Add layer and read keys
its_path = oe_get(

"ITS Leeds", layer = "points", download_only = TRUE,
download_directory = tempdir(), quiet = TRUE

)
oe_get_keys(its_path, layer = "points")

Remove .pbf and .gpkg files in tempdir
rm(its_pbf, res, its_path, its, its_extra)
oe_clean(tempdir())

oe_get_network Import transport networks used by a specific mode of transport

Description

This function is a wrapper around oe_get() and can be used to import a road network given a
place and a mode of transport. Check the Details for a precise description of the procedures used
to filter the OSM ways according to each each mode of transport.

Usage

oe_get_network(place, mode = c("cycling", "driving", "walking"), ...)

Arguments

place Description of the geographical area that should be matched with a .osm.pbf
file. Can be either a length-1 character vector, an sf/sfc/bbox object, or a nu-
meric vector of coordinates with length 2. In the last case, it is assumed that the
EPSG code is 4326 specified as c(LON, LAT), while you can use any CRS with
sf/sfc/bbox objects. See Details and Examples in oe_match().

mode A character string of length one denoting the desired mode of transport. Can be
abbreviated. Currently cycling (the default), driving and walking are sup-
ported.

... Additional arguments passed to oe_get() such as boundary or force_download.

Details

The definition of usable transport network was taken from the Python packages osmnx and pyrosm
and several other documents found online, i.e. https://wiki.openstreetmap.org/wiki/OSM_
tags_for_routing/Access_restrictions, https://wiki.openstreetmap.org/wiki/Key:access.
See also the discussion in https://github.com/ropensci/osmextract/issues/153.

The cycling mode of transport (i.e. the default value for mode parameter) selects the OSM ways
that meet the following conditions:

https://github.com/gboeing/osmnx/blob/main/osmnx/_downloader.py
https://pyrosm.readthedocs.io/en/latest/
https://wiki.openstreetmap.org/wiki/OSM_tags_for_routing/Access_restrictions
https://wiki.openstreetmap.org/wiki/OSM_tags_for_routing/Access_restrictions
https://wiki.openstreetmap.org/wiki/Key:access
https://github.com/ropensci/osmextract/issues/153

20 oe_get_network

• The highway tag is not missing;

• The highway tag is not equal to abandoned, bus_guideway, byway, construction, corridor,
elevator, fixme, escalator, gallop, historic, no, planned, platform, proposed, raceway
or steps;

• The highway tag is not equal to motorway, motorway_link, footway, bridleway or pedestrian
unless the tag bicycle is equal to yes, designated, permissive or destination (see here
for more details);

• The access tag is not equal to private or no;

• The bicycle tag is not equal to no, use_sidepath, private, or restricted;

• The service tag does not contain the string private (i.e. private, private_access and
similar);

The walking mode of transport selects the OSM ways that meet the following conditions:

• The highway tag is not missing;

• The highway tag is not equal to abandoned, bus_guideway, byway, construction, corridor,
elevator, fixme, escalator, gallop, historic, no, planned, platform, proposed, raceway,
motorway or motorway_link;

• The highway tag is not equal to cycleway unless the foot tag is equal to yes;

• The access tag is not equal to private or no;

• The foot tag is not equal to no, use_sidepath, private, or restricted;

• The service tag does not contain the string private (i.e. private, private_access and
similar).

The driving mode of transport selects the OSM ways that meet the following conditions:

• The highway tag is not missing;

• The highway tag is not equal to abandoned, bus_guideway, byway, construction, corridor,
elevator, fixme, escalator, gallop, historic, no, planned, platform, proposed, cycleway,
pedestrian, bridleway, path, or footway;

• The access tag is not equal to private or no;

• The service tag does not contain the string private (i.e. private, private_access and
similar).

Feel free to create a new issue in the github repo if you want to suggest modifications to the current
filters or propose new values for alternative modes of transport.

Value

An sf object.

See Also

oe_get()

https://wiki.openstreetmap.org/wiki/Bicycle#Bicycle_Restrictions
https://github.com/ropensci/osmextract

oe_match 21

Examples

Copy the ITS file to tempdir() to make sure that the examples do not
require internet connection. You can skip the next 4 lines (and start
directly with oe_get_keys) when running the examples locally.

its_pbf = file.path(tempdir(), "test_its-example.osm.pbf")
file.copy(

from = system.file("its-example.osm.pbf", package = "osmextract"),
to = its_pbf,
overwrite = TRUE

)

default value returned by OSM
its = oe_get(

"ITS Leeds", quiet = TRUE, download_directory = tempdir()
)
plot(its["highway"], lwd = 2, key.pos = 4, key.width = lcm(2.75))
walking mode of transport
its_walking = oe_get_network(

"ITS Leeds", mode = "walking",
download_directory = tempdir(), quiet = TRUE

)
plot(its_walking["highway"], lwd = 2, key.pos = 4, key.width = lcm(2.75))
driving mode of transport
its_driving = oe_get_network(

"ITS Leeds", mode = "driving",
download_directory = tempdir(), quiet = TRUE

)
plot(its_driving["highway"], lwd = 2, key.pos = 4, key.width = lcm(2.75))

Remove .pbf and .gpkg files in tempdir
oe_clean(tempdir())

oe_match Match input place with a url

Description

This function is used to match an input place with the URL of a .osm.pbf file (and its file-size, if
present). The URLs are stored in several provider’s databases. See oe_providers() and examples.

Usage

oe_match(place, ...)

Default S3 method:
oe_match(place, ...)

S3 method for class 'bbox'

22 oe_match

oe_match(place, ...)

S3 method for class 'sf'
oe_match(place, ...)

S3 method for class 'sfc'
oe_match(place, provider = "geofabrik", level = NULL, quiet = FALSE, ...)

S3 method for class 'numeric'
oe_match(place, provider = "geofabrik", quiet = FALSE, ...)

S3 method for class 'character'
oe_match(
place,
provider = "geofabrik",
quiet = FALSE,
match_by = "name",
max_string_dist = 1,
...

)

Arguments

place Description of the geographical area that should be matched with a .osm.pbf
file. Can be either a length-1 character vector, an sf/sfc/bbox object, or a nu-
meric vector of coordinates with length 2. In the last case, it is assumed that the
EPSG code is 4326 specified as c(LON, LAT), while you can use any CRS with
sf/sfc/bbox objects. See Details and Examples in oe_match().

... arguments passed to other methods

provider Which provider should be used to download the data? Available providers can
be found with the following command: oe_providers(). For oe_get() and
oe_match(), if place is equal to ITS Leeds, then provider is set equal to
test. This is just for simple examples and internal tests.

level An integer representing the desired hierarchical level in case of spatial match-
ing. For the geofabrik provider, for example, 1 corresponds with continent-
level datasets, 2 for countries, 3 corresponds to regions and 4 to subregions.
Hence, we could approximately say that smaller administrative units correspond
to bigger levels. If NULL, the default, the oe_* functions will select the highest
available level. See Details and Examples in oe_match().

quiet Boolean. If FALSE, the function prints informative messages. Starting from sf
version 0.9.6, if quiet is equal to FALSE, then vectortranslate operations will
display a progress bar.

match_by Which column of the provider’s database should be used for matching the in-
put place with a .osm.pbf file? The default is "name". Check Details and
Examples in oe_match() to understand how this parameter works. Ignored if
place is not a character vector since the matching is performed through a spatial
operation.

https://r-spatial.github.io/sf/news/index.html#version-0-9-6-2020-09-13

oe_match 23

max_string_dist

Numerical value greater or equal than 0. What is the maximum distance in fuzzy
matching (i.e. Approximate String Distance, see adist()) between input place
and match_by column to tolerate before testing alternative providers or looking
for geographical matching with Nominatim API? This parameter is set equal to
0 if match_by is equal to iso3166_1_alpha2 or iso3166_2. Check Details and
Examples in oe_match() to understand why this parameter is important. Ig-
nored if place is not a character vector since the matching is performed through
a spatial operation.

Details

If the input place is specified as a spatial object (either sf or sfc), then the function will return a
geographical area that completely contains the object (or an error). The argument level (which
must be specified as an integer between 1 and 4, extreme values included) is used to select between
multiple geographically nested areas. We could roughly say that smaller administrative units corre-
spond to higher levels. Check the help page of the chosen provider for more details on level field.
By default, level = NULL, which means that oe_match() will return the area corresponding to the
highest available level. If there is no geographical area at the desired level, then the function will
return an error. If there are multiple areas at the same level intersecting the input place, then the
function will return the area whose centroid is closest to the input place.

If the input place is specified as a character vector and there are multiple plausible matches between
the input place and the match_by column, then the function will return a warning and it will select
the first match. See Examples. On the other hand, if the approximate string distance between the
input place and the best match in match_by column is greater than max_string_dist, then the
function will look for exact matches (i.e. max_string_dist = 0) in the other supported providers.
If it finds an exact match, then it will return the corresponding URL. Otherwise, if match_by is
equal to "name", then it will try to geolocate the input place using the Nominatim API, and then
it will perform a spatial matching operation (see Examples and introductory vignette), while, if
match_by != "name", then it will return an error.

The fields iso3166_1_alpha2 and iso3166_2 are used by Geofabrik provider to perform matching
operations using ISO 3166-1 alpha-2 and ISO 3166-2 codes. See geofabrik_zones for more details.

Value

A list with two elements, named url and file_size. The first element is the URL of the .osm.pbf
file associated with the input place, while the second element is the size of the file in bytes (which
may be NULL or NA)

See Also

oe_providers() and oe_match_pattern().

Examples

The simplest example:
oe_match("Italy")

The default provider is "geofabrik", but we can change that:

https://nominatim.org/release-docs/develop/api/Overview/
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/ISO_3166-2

24 oe_match

oe_match("Leeds", provider = "bbbike")

By default, the matching operations are performed through the column
"name" in the provider's database but this can be a problem. Hence,
you can perform the matching operations using other columns:
oe_match("RU", match_by = "iso3166_1_alpha2")
Run oe_providers() for reading a short description of all providers and
check the help pages of the corresponding databases to learn which fields
are present.

You can always increase the max_string_dist argument, but it can be
dangerous:
oe_match("London", max_string_dist = 3, quiet = FALSE)

Match the input zone using an sfc object:
milan_duomo = sf::st_sfc(sf::st_point(c(1514924, 5034552)), crs = 3003)
oe_match(milan_duomo, quiet = FALSE)
leeds = sf::st_sfc(sf::st_point(c(430147.8, 433551.5)), crs = 27700)
oe_match(leeds, provider = "bbbike")

If you specify more than one sfg object, then oe_match will select the OSM
extract that covers all areas
milan_leeds = sf::st_sfc(

sf::st_point(c(9.190544, 45.46416)), # Milan
sf::st_point(c(-1.543789, 53.7974)), # Leeds
crs = 4326

)
oe_match(milan_leeds)

Match the input zone using a numeric vector of coordinates
(in which case crs = 4326 is assumed)
oe_match(c(9.1916, 45.4650)) # Milan, Duomo using CRS = 4326

The following returns a warning since Berin is matched both
with Benin and Berlin
oe_match("Berin", quiet = FALSE)

If the input place does not match any zone in the chosen provider, then the
function will test the other providers:
oe_match("Leeds")

If the input place cannot be exactly matched with any zone in any provider,
then the function will try to geolocate the input and then it will perform a
spatial match:
Not run:
oe_match("Milan")
End(Not run)

The level parameter can be used to select smaller or bigger geographical
areas during spatial matching
yak = c(-120.51084, 46.60156)
Not run:
oe_match(yak, level = 3) # error

oe_match_pattern 25

oe_match(yak, level = 2) # by default, level is equal to the maximum value
oe_match(yak, level = 1)
End(Not run)

oe_match_pattern Check patterns in the provider’s databases

Description

This function is used to explore all provider’s databases and look for matches. This function can
be useful in combination with oe_match() and oe_get() for an exploratory analysis and an easy
match. See Examples.

Usage

oe_match_pattern(pattern, ...)

S3 method for class 'numeric'
oe_match_pattern(pattern, full_row = FALSE, ...)

S3 method for class 'sf'
oe_match_pattern(pattern, full_row = FALSE, ...)

S3 method for class 'bbox'
oe_match_pattern(pattern, full_row = FALSE, ...)

S3 method for class 'sfc'
oe_match_pattern(pattern, full_row = FALSE, ...)

S3 method for class 'character'
oe_match_pattern(pattern, match_by = "name", full_row = FALSE, ...)

Arguments

pattern Description of the pattern. Can be either a length-1 character vector, an sf/sfc/bbox
object, or a numeric vector of coordinates with length 2. In the last case, it is
assumed that the EPSG code is 4326 specified as c(LON, LAT), while you can
use any CRS with sf/sfc/bbox objects.

... arguments passed to other methods

full_row Boolean. Return all columns for the matching rows? FALSE by default.

match_by Name of the column in the provider’s database that will be used to find the match
in case of character input. In all the other cases, the match is performed using
a spatial overlay operation and the output returns the values stored in the name
column (or even the full sf object when full_row is TRUE).

26 oe_providers

Value

A list of character vectors or sf objects (according to the value of the parameter full_row). If no
OSM zone can be matched with the input string, then the function returns an empty list.

Examples

oe_match_pattern("Yorkshire")

res = oe_match_pattern("Yorkshire", full_row = TRUE)
lapply(res, function(x) sf::st_drop_geometry(x)[, 1:3])

oe_match_pattern(c(9, 45)) # long/lat for Milan, Italy

oe_providers Summary of available providers

Description

This function is used to display a short summary of the major characteristics of the databases asso-
ciated to all available providers.

Usage

oe_providers(quiet = FALSE)

Arguments

quiet Boolean. If FALSE, the function prints informative messages. Starting from sf
version 0.9.6, if quiet is equal to FALSE, then vectortranslate operations will
display a progress bar.

Value

A data.frame with 4 columns representing the name of each available provider, the name of the
corresponding database and the number of features and fields.

Examples

oe_providers()

https://r-spatial.github.io/sf/news/index.html#version-0-9-6-2020-09-13

oe_read 27

oe_read Read a .pbf or .gpkg object from file or url

Description

This function is used to read a .pbf or .gpkg object from file or URL. It is a wrapper around
oe_download(), oe_vectortranslate(), and sf::st_read(), creating an easy way to download,
convert, and read a .pbf or .gpkg file. Check the introductory vignette and the help pages of the
wrapped function for more details.

Usage

oe_read(
file_path,
layer = "lines",
...,
provider = NULL,
download_directory = oe_download_directory(),
file_size = NULL,
force_download = FALSE,
max_file_size = 5e+08,
download_only = FALSE,
skip_vectortranslate = FALSE,
vectortranslate_options = NULL,
osmconf_ini = NULL,
extra_tags = NULL,
force_vectortranslate = FALSE,
never_skip_vectortranslate = FALSE,
boundary = NULL,
boundary_type = c("spat", "clipsrc"),
quiet = FALSE

)

Arguments

file_path A URL or the path to a .pbf or .gpkg file. If a URL, then it must be specified
using HTTP/HTTPS protocol.

layer Which layer should be read in? Typically points, lines (the default), multilinestrings,
multipolygons or other_relations. If you specify an ad-hoc query using the
argument query (see introductory vignette and examples), then oe_get() and
oe_read() will read the layer specified in the query and ignore layer. See also
#122.

... (Named) arguments that will be passed to sf::st_read(), like query, wkt_filter
or stringsAsFactors. Check the introductory vignette to understand how to
create your own (SQL-like) queries.

https://github.com/ropensci/osmextract/issues/122

28 oe_read

provider Which provider should be used to download the data? Available providers can
be found with the following command: oe_providers(). For oe_get() and
oe_match(), if place is equal to ITS Leeds, then provider is set equal to
test. This is just for simple examples and internal tests.

download_directory

Where to download the file containing the OSM data? By default this is equal to
oe_download_directory(), which is equal to tempdir() and it changes each
time you restart R. You can set a persistent download_directory by adding
the following to your .Renviron file (e.g. with edit_r_environ function in
usethis package): OSMEXT_DOWNLOAD_DIRECTORY=/path/to/osm/data.

file_size How big is the file? Optional. NA by default. If it’s bigger than max_file_size
and the function is run in interactive mode, then an interactive menu is displayed,
asking for permission to download the file.

force_download Should the .osm.pbf file be updated if it has already been downloaded? FALSE
by default. This parameter is used to update old .osm.pbf files.

max_file_size The maximum file size to download without asking in interactive mode. Default:
5e+8, half a gigabyte.

download_only Boolean. If TRUE, then the function only returns the path where the matched file
is stored, instead of reading it. FALSE by default.

skip_vectortranslate

Boolean. If TRUE, then the function skips all vectortranslate operations and it
reads (or simply returns the path) of the .osm.pbf file. FALSE by default.

vectortranslate_options

Options passed to the sf::gdal_utils() argument options. Set by default.
Check details in the introductory vignette and the help page of oe_vectortranslate().

osmconf_ini The configuration file. See documentation at gdal.org. Check details in the intro-
ductory vignette and the help page of oe_vectortranslate(). Set by default.

extra_tags Which additional columns, corresponding to OSM tags, should be in the result-
ing dataset? NULL by default. Check the introductory vignette and the help pages
of oe_vectortranslate() and oe_get_keys(). Ignored when osmconf_ini
is not NULL.

force_vectortranslate

Boolean. Force the original .pbf file to be translated into a .gpkg file, even
if a .gpkg with the same name already exists? FALSE by default. If tags in
extra_tags match data in previously translated .gpkg files no translation oc-
curs (see #173 for details). Check the introductory vignette and the help page of
oe_vectortranslate().

never_skip_vectortranslate

Boolean. This is used in case the user passed its own .ini file or vectortranslate
options (since, in those case, it’s too difficult to determine if an existing .gpkg
file was generated following the same options.)

boundary An sf/sfc/bbox object that will be used to create a spatial filter during the vec-
tortranslate operations. The type of filter can be chosen using the argument
boundary_type.

https://gdal.org/drivers/vector/osm.html
https://github.com/ropensci/osmextract/issues/173

oe_read 29

boundary_type A character vector of length 1 specifying the type of spatial filter. The spat filter
selects only those features that intersect a given area, while clipsrc also clips
the geometries. Check the examples and also here for more details.

quiet Boolean. If FALSE, the function prints informative messages. Starting from sf
version 0.9.6, if quiet is equal to FALSE, then vectortranslate operations will
display a progress bar.

Details

The arguments provider, download_directory, file_size, force_download, and max_file_size
are ignored if file_path points to an existing .pbf or .gpkg file.

Please note that you cannot add any field to an existing .gpkg file using the argument extra_tags
without rerunning the vectortranslate process on the corresponding .pbf file. On the other hand, you
can extract some of the tags in other_tags field as new columns. See examples and oe_get_keys()
for more details.

Value

An sf object or, when download_only argument equals TRUE, a character vector.

Examples

Read an existing .pbf file. First we need to copy a .pbf file into a
temporary directory
its_pbf = file.path(tempdir(), "test_its-example.osm.pbf")
file.copy(

from = system.file("its-example.osm.pbf", package = "osmextract"),
to = its_pbf

)
oe_read(its_pbf)

Read a new layer
oe_read(its_pbf, layer = "points")

The following example shows how to add new tags
names(oe_read(its_pbf, extra_tags = c("oneway", "ref"), quiet = TRUE))

Read an existing .gpkg file. This file was created internally by oe_read().
its_gpkg = file.path(tempdir(), "test_its-example.gpkg")
oe_read(its_gpkg)

You cannot add any new layer to an existing .gpkg file but you can extract
some of the tags in other_tags. Check oe_get_keys() for more details.
names(oe_read(its_gpkg, extra_tags = c("maxspeed"))) # doesn't work
Instead, use the query argument
names(oe_read(

its_gpkg,
quiet = TRUE,
query =
"SELECT *,
hstore_get_value(other_tags, 'maxspeed') AS maxspeed

https://gdal.org/programs/ogr2ogr.html
https://r-spatial.github.io/sf/news/index.html#version-0-9-6-2020-09-13

30 oe_search

FROM lines
"

))

Read from a URL
my_url = "https://github.com/ropensci/osmextract/raw/master/inst/its-example.osm.pbf"
Please note that if you read from a URL which is not linked to one of the
supported providers, you need to specify the provider parameter:
Not run:
oe_read(my_url, provider = "test", quiet = FALSE)
End(Not run)

Remove .pbf and .gpkg files in tempdir
oe_clean(tempdir())

oe_search Search for a place and return an sf data frame locating it

Description

This (only internal and experimental) function provides a simple interface to the nominatim service
for finding the geographical location of place names.

Usage

oe_search(
place,
base_url = "https://nominatim.openstreetmap.org",
destfile = tempfile(fileext = ".geojson"),
...

)

Arguments

place Text string containing the name of a place the location of which is to be found,
such as "Leeds" or "Milan".

base_url The URL of the nominatim server to use. The main open server hosted by
OpenStreetMap is the default.

destfile The name of the destination file where the output of the search query, a .geojson
file, should be saved.

... Extra arguments that are passed to sf::st_read.

Value

An sf object corresponding to the input place. The sf object is read by sf::st_read() and it is
based on a geojson file returned by Nominatim API.

https://nominatim.openstreetmap.org

oe_update 31

oe_update Update all the .osm.pbf files saved in a directory

Description

This function is used to re-download all .osm.pbf files stored in download_directory that were
firstly downloaded through oe_get(). See Details.

Usage

oe_update(
download_directory = oe_download_directory(),
quiet = FALSE,
delete_gpkg = TRUE,
max_file_size = 5e+08,
...

)

Arguments

download_directory

Character string of the path of the directory where the .osm.pbf files are saved.

quiet Boolean. If FALSE the function prints informative messages. See Details.

delete_gpkg Boolean. if TRUE the function deletes the old .gpkg files. We added this parame-
ter to minimize the probability of accidentally reading-in old and not-synchronized
.gpkg files. See Details. Defaults to TRUE.

max_file_size The maximum file size to download without asking in interactive mode. Default:
5e+8, half a gigabyte.

... Additional parameter that will be passed to oe_get() (such as stringsAsFactors
or query).

Details

This function is used to re-download .osm.pbf files that are stored in a directory (specified by
download_directory param) and that were firstly downloaded through oe_get() . The name of
the files must begin with the name of one of the supported providers (see oe_providers()) and it
must end with .osm.pbf. All other files in the directory that do not match this format are ignored.

The process for re-downloading the .osm.pbf files is performed using the function oe_get() .
The appropriate provider is determined by looking at the first word in the path of the .osm.pbf
file. The place is determined by looking at the second word in the file path and the match-
ing is performed through the id column in the provider’s database. So, for example, the path
geofabrik_italy-latest-update.osm.pbf will be matched with the provider "geofabrik" and
the geographical zone italy through the column id in geofabrik_zones.

The parameter delete_gpkg is used to delete all .gpkg files in download_directory. We decided
to set its default value to TRUE to minimize the possibility of reading-in old and non-synchronized

32 oe_vectortranslate

.gpkg files. If you set delete_gpkg = FALSE, then you need to manually reconvert all files using
oe_get() or oe_vectortranslate() .

If you set the parameter quiet to FALSE, then the function will print some useful messages regarding
the characteristics of the files before and after updating them. More precisely, it will print the output
of the columns size, mtime and ctime from file.info(). Please note that the meaning of mtime
and ctime depends on the OS and the file system. Check file.info().

Value

The path(s) of the .osm.pbf file(s) that were updated.

Examples

Not run:
Set up a fake directory with .pbf and .gpkg files
fake_dir = tempdir()
Fill the directory
oe_get("Andorra", download_directory = fake_dir, download_only = TRUE)
Check the directory
list.files(fake_dir, pattern = "gpkg|pbf")
Update all .pbf files and delete all .gpkg files
oe_update(fake_dir, quiet = TRUE)
list.files(fake_dir, pattern = "gpkg|pbf")
End(Not run)

oe_vectortranslate Translate a .osm.pbf file into .gpkg format

Description

This function is used to translate a .osm.pbf file into .gpkg format. The conversion is performed
using ogr2ogr via the vectortranslate utility in sf::gdal_utils() . It was created following
the suggestions of the maintainers of GDAL. See Details and Examples to understand the basic
usage, and check the introductory vignette for more complex use-cases.

Usage

oe_vectortranslate(
file_path,
layer = "lines",
vectortranslate_options = NULL,
osmconf_ini = NULL,
extra_tags = NULL,
force_vectortranslate = FALSE,
never_skip_vectortranslate = FALSE,
boundary = NULL,
boundary_type = c("spat", "clipsrc"),
quiet = FALSE

)

https://gdal.org/programs/ogr2ogr.html#ogr2ogr
https://github.com/OSGeo/gdal/issues/2100#issuecomment-565707053

oe_vectortranslate 33

Arguments

file_path Character string representing the path of the input .pbf or .osm.pbf file.

layer Which layer should be read in? Typically points, lines (the default), multilinestrings,
multipolygons or other_relations. If you specify an ad-hoc query using the
argument query (see introductory vignette and examples), then oe_get() and
oe_read() will read the layer specified in the query and ignore layer. See also
#122.

vectortranslate_options

Options passed to the sf::gdal_utils() argument options. Set by default.
Check details in the introductory vignette and the help page of oe_vectortranslate().

osmconf_ini The configuration file. See documentation at gdal.org. Check details in the intro-
ductory vignette and the help page of oe_vectortranslate(). Set by default.

extra_tags Which additional columns, corresponding to OSM tags, should be in the result-
ing dataset? NULL by default. Check the introductory vignette and the help pages
of oe_vectortranslate() and oe_get_keys(). Ignored when osmconf_ini
is not NULL.

force_vectortranslate

Boolean. Force the original .pbf file to be translated into a .gpkg file, even
if a .gpkg with the same name already exists? FALSE by default. If tags in
extra_tags match data in previously translated .gpkg files no translation oc-
curs (see #173 for details). Check the introductory vignette and the help page of
oe_vectortranslate().

never_skip_vectortranslate

Boolean. This is used in case the user passed its own .ini file or vectortranslate
options (since, in those case, it’s too difficult to determine if an existing .gpkg
file was generated following the same options.)

boundary An sf/sfc/bbox object that will be used to create a spatial filter during the vec-
tortranslate operations. The type of filter can be chosen using the argument
boundary_type.

boundary_type A character vector of length 1 specifying the type of spatial filter. The spat filter
selects only those features that intersect a given area, while clipsrc also clips
the geometries. Check the examples and also here for more details.

quiet Boolean. If FALSE, the function prints informative messages. Starting from sf
version 0.9.6, if quiet is equal to FALSE, then vectortranslate operations will
display a progress bar.

Details

The new .gpkg file is created in the same directory as the input .osm.pbf file. The translation
process is performed using the vectortranslate utility in sf::gdal_utils(). This operation
can be customized in several ways modifying the parameters layer, extra_tags, osmconf_ini,
vectortranslate_options, boundary and boundary_type.

The .osm.pbf files processed by GDAL are usually categorized into 5 layers, named points,
lines, multilinestrings, multipolygons and other_relations. Check the first paragraphs
here for more details. This function can covert only one layer at a time, and the parameter layer is
used to specify which layer of the .osm.pbf file should be converted. Several layers with different

https://github.com/ropensci/osmextract/issues/122
https://gdal.org/drivers/vector/osm.html
https://github.com/ropensci/osmextract/issues/173
https://gdal.org/programs/ogr2ogr.html
https://r-spatial.github.io/sf/news/index.html#version-0-9-6-2020-09-13
https://gdal.org/drivers/vector/osm.html

34 oe_vectortranslate

names can be stored in the same .gpkg file. By default, the function will convert the lines layer
(which is the most common one according to our experience).

The arguments osmconf_ini and extra_tags are used to modify how GDAL reads and processes
a .osm.pbf file. More precisely, several operations that GDAL performs on the input .osm.pbf file
are governed by a CONFIG file, that can be checked at the following link. The basic components of
OSM data are called elements and they are divided into nodes, ways or relations, so, for example, the
code at line 7 of that file is used to determine which ways are assumed to be polygons (according
to the simple-feature definition of polygon) if they are closed. Moreover, OSM data is usually
described using several tags, i.e pairs of two items: a key and a value. The code at lines 33, 53, 85,
103, and 121 is used to determine, for each layer, which tags should be explicitly reported as fields
(while all the other tags are stored in the other_tags column). The parameter extra_tags is used
to determine which extra tags (i.e. key/value pairs) should be added to the .gpkg file (other than the
default ones).

By default, the vectortranslate operations are skipped if the function detects a file having the same
path as the input file, .gpkg extension, a layer with the same name as the parameter layer and
all extra_tags. In that case the function will simply return the path of the .gpkg file. This be-
haviour can be overwritten setting force_vectortranslate = TRUE. The vectortranslate operations
are never skipped if osmconf_ini, vectortranslate_options, boundary or boundary_type ar-
guments are not NULL.

The parameter osmconf_ini is used to pass your own CONFIG file in case you need more con-
trol over the GDAL operations. Check the package introductory vignette for an example. If
osmconf_ini is equal to NULL (the default value), then the function uses the standard osmconf.ini
file defined by GDAL (but for the extra tags).

The parameter vectortranslate_options is used to control the options that are passed to ogr2ogr
via sf::gdal_utils() when converting between .osm.pbf and .gpkg formats. ogr2ogr can
perform various operations during the conversion process, such as spatial filters or SQL queries.
These operations can be tuned using the vectortranslate_options argument. If NULL (the de-
fault value), then vectortranslate_options is set equal to

c("-f", "GPKG", "-overwrite", "-oo", paste0("CONFIG_FILE=", osmconf_ini), "-lco", "GEOMETRY_NAME=geometry",
layer).

Explanation:

• "-f", "GPKG" says that the output format is GPKG;
• "-overwrite is used to delete an existing layer and recreate it empty;
• "-oo", paste0("CONFIG_FILE=", osmconf_ini) is used to set the Open Options for the
.osm.pbf file and change the CONFIG file (in case the user asks for any extra tag or a totally
different CONFIG file);

• "-lco", "GEOMETRY_NAME=geometry" is used to change the layer creation options for the
.gpkg file and modify the name of the geometry column;

• layer indicates which layer should be converted.

If vectortranslate_options is not NULL, then the options c("-f", "GPKG", "-overwrite",
"-oo", "CONFIG_FILE=", path-to-config-file, "-lco", "GEOMETRY_NAME=geometry", layer)
are always appended unless the user explicitly sets different default parameters for the arguments
-f, -oo, -lco, and layer.

The arguments boundary and boundary_type can be used to set up a spatial filter during the vector-
translate operations (and speed up the process) using an sf or sfc object (POLYGON or MULTIPOLYGON).

https://github.com/OSGeo/gdal/blob/master/ogr/ogrsf_frmts/osm/data/osmconf.ini
https://wiki.openstreetmap.org/wiki/Elements
https://wiki.openstreetmap.org/wiki/Tags
https://gdal.org/drivers/vector/osm.html#open-options
https://gdal.org/drivers/vector/gpkg.html?highlight=gpkg#layer-creation-options

oe_vectortranslate 35

The default arguments create a rectangular spatial filter which selects all features that intersect the
area. Setting boundary_type = "clipsrc" clips the geometries. In both cases, the appropriate
options are automatically added to the vectortranslate_options (unless a user explicitly sets
different default options). Check Examples in oe_get() and the introductory vignette.

See also the help page of sf::gdal_utils() and ogr2ogr for more examples and extensive docu-
mentation on all available options that can be tuned during the vectortranslate process.

Value

Character string representing the path of the .gpkg file.

See Also

oe_get_keys()

Examples

First we need to match an input zone with a .osm.pbf file
(its_match = oe_match("ITS Leeds"))

Copy ITS file to tempdir so that the examples do not require internet
connection. You can skip the next 3 lines (and start directly with
oe_download()) when running the examples locally.

file.copy(
from = system.file("its-example.osm.pbf", package = "osmextract"),
to = file.path(tempdir(), "test_its-example.osm.pbf"),
overwrite = TRUE

)

The we can download the .osm.pbf file (if it was not already downloaded)
its_pbf = oe_download(

file_url = its_match$url,
file_size = its_match$file_size,
download_directory = tempdir(),
provider = "test"

)

Check that the file was downloaded
list.files(tempdir(), pattern = "pbf|gpkg")

Convert to gpkg format
its_gpkg = oe_vectortranslate(its_pbf)

Now there is an extra .gpkg file
list.files(tempdir(), pattern = "pbf|gpkg")

Check the layers of the .gpkg file
sf::st_layers(its_gpkg, do_count = TRUE)

Add points layer
its_gpkg = oe_vectortranslate(its_pbf, layer = "points")

https://gdal.org/programs/ogr2ogr.html

36 openstreetmap_fr_zones

sf::st_layers(its_gpkg, do_count = TRUE)

Add extra tags to the lines layer
names(sf::st_read(its_gpkg, layer = "lines", quiet = TRUE))
its_gpkg = oe_vectortranslate(

its_pbf,
extra_tags = c("oneway", "maxspeed")

)
names(sf::st_read(its_gpkg, layer = "lines", quiet = TRUE))

Adjust vectortranslate options and convert only 10 features
for the lines layer
oe_vectortranslate(

its_pbf,
vectortranslate_options = c("-limit", 10)

)
sf::st_layers(its_gpkg, do_count = TRUE)

Remove .pbf and .gpkg files in tempdir
oe_clean(tempdir())

openstreetmap_fr_zones

An sf object of geographical zones taken from down-
load.openstreetmap.fr

Description

An sf object containing the URLs, names, and file-sizes of the OSM extracts stored at http:
//download.openstreetmap.fr/.

Usage

openstreetmap_fr_zones

Format

An sf object with 1187 rows and 7 columns:

id A unique ID for each area. It is used by oe_update().
name The, usually English, long-form name of the city.
parent The identifier of the next larger excerpts that contains this one, if present.
level An integer code between 1 and 4. Check http://download.openstreetmap.fr/polygons/

to understand the hierarchical structure of the zones. 1L correspond to the biggest areas. This
is used only for matching operations in case of spatial input.

pbf Link to the latest .osm.pbf file for this region.
pbf_file_size Size of the pbf file in bytes.
geometry The sfg for that geographical region, rectangular. See also oe_get_boundary() to

extract the proper geographical boundaries.

http://download.openstreetmap.fr/
http://download.openstreetmap.fr/
http://download.openstreetmap.fr/polygons/

read_poly 37

Source

https://download.bbbike.org/osm/

See Also

Other provider’s-database: bbbike_zones, geofabrik_zones

read_poly Read a .poly file.

Description

Read a .poly file.

Usage

read_poly(input, crs = "OGC:CRS84", ...)

Arguments

input Character vector representing a polygon object saved using the .poly format.
Can be also a path to a file or a URL pointing to a valid .poly file.

crs The Coordinate Reference System (CRS) of the input polygon.

... Further arguments passed to readLines() (which is the function used to read
external .poly files).

Details

The Polygon Filter File Format (.poly) is defined here. The code behind the function was inspired
by the parse_poly function defined here.

Geofabrik stores the .poly files used to generate their extracts. Furthermore, a nice collection of
exact-border poly files created from cities with an OSM Relation ID is available in this git repository
on github: https://github.com/jameschevalier/cities.

The default value for the crs argument is "OGC:CRS84" instead of "4326" or "EPSG:4326" since,
by definition, the coordinates are provided as "longitude, latitude" (but these differences should be
relevant only when sf::st_axis_order() is TRUE).

Value

A sfc_MULTIPOLYGON/sfc object.

https://download.bbbike.org/osm/
https://wiki.openstreetmap.org/wiki/Osmosis/Polygon_Filter_File_Format
https://wiki.openstreetmap.org/wiki/Osmosis/Polygon_Filter_File_Python_Parsing
https://download.geofabrik.de/
https://github.com/jameschevalier/cities

38 test_zones

Examples

toy_poly <- c(
"test_poly",
"first_area",
"0 0",
"0 1",
"1 1",
"1 0",
"0 0",
"END",
"END"

)
(out <- read_poly(toy_poly))
plot(out)

Not run:
italy_poly <- "https://download.geofabrik.de/europe/italy.poly"
plot(read_poly(italy_poly))
End(Not run)

test_zones An sf object of geographical zones taken from down-
load.openstreetmap.fr

Description

This object represent a minimal provider’s database and it should be used only for examples and
tests.

Usage

test_zones

Format

An object of class sf (inherits from data.frame) with 2 rows and 7 columns.

Index

∗ datasets
bbbike_zones, 2
geofabrik_zones, 3
openstreetmap_fr_zones, 36
test_zones, 38

∗ provider’s-database
bbbike_zones, 2
geofabrik_zones, 3
openstreetmap_fr_zones, 36

adist(), 10, 23

bbbike_zones, 2, 4, 37

download.file(), 6

file.info(), 32

geofabrik_zones, 2, 3, 3, 23, 37

oe_clean, 4
oe_download, 5
oe_download(), 12, 27
oe_download_directory, 7
oe_download_directory(), 5, 8, 11, 28
oe_find, 7
oe_get, 9
oe_get(), 8, 10, 20, 22, 25, 28, 31, 32
oe_get_boundary, 14
oe_get_keys, 15
oe_get_keys(), 11, 28, 29, 33, 35
oe_get_network, 19
oe_match, 21
oe_match(), 8–12, 14, 19, 22, 23, 25, 28
oe_match_pattern, 25
oe_match_pattern(), 23
oe_providers, 26
oe_providers(), 8, 10, 21–23, 28, 31
oe_read, 27
oe_read(), 9, 12
oe_search, 30

oe_update, 31
oe_vectortranslate, 32
oe_vectortranslate(), 11, 12, 27, 28, 32, 33
openstreetmap_fr_zones, 3, 4, 36

print.oe_key_values_list (oe_get_keys),
15

read_poly, 37

sf::gdal_utils(), 11, 28, 32–35
sf::st_read(), 10, 27

tempdir(), 5, 11, 28
test_zones, 38

39

	bbbike_zones
	geofabrik_zones
	oe_clean
	oe_download
	oe_download_directory
	oe_find
	oe_get
	oe_get_boundary
	oe_get_keys
	oe_get_network
	oe_match
	oe_match_pattern
	oe_providers
	oe_read
	oe_search
	oe_update
	oe_vectortranslate
	openstreetmap_fr_zones
	read_poly
	test_zones
	Index

