
Package: piggyback (via r-universe)
November 20, 2024

Version 0.1.5.9005

Title Managing Larger Data on a GitHub Repository

Description Helps store files as GitHub release assets, which is a
convenient way for large/binary data files to piggyback onto
public and private GitHub repositories. Includes functions for
file downloads, uploads, and managing releases via the GitHub
API.

URL https://docs.ropensci.org/piggyback/,

https://github.com/ropensci/piggyback

BugReports https://github.com/ropensci/piggyback/issues

License GPL-3

Encoding UTF-8

ByteCompile true

Imports cli, glue, gh, httr, jsonlite, fs, memoise, rlang

Suggests arrow, spelling, readr, covr, testthat, knitr, rmarkdown,
gert, withr, magrittr

VignetteBuilder knitr

RoxygenNote 7.2.3

Roxygen list(markdown = TRUE)

Language en-US

Config/pak/sysreqs git make libssl-dev

Repository https://ropensci.r-universe.dev

RemoteUrl https://github.com/ropensci/piggyback

RemoteRef master

RemoteSha 45dca07c5586c9e8075ddfa0a8970d72f26deabb

1

https://docs.ropensci.org/piggyback/
https://github.com/ropensci/piggyback
https://github.com/ropensci/piggyback/issues

2 piggyback-package

Contents
piggyback-package . 2
.gh_api_url . 3
pb_delete . 3
pb_download . 4
pb_download_url . 6
pb_list . 7
pb_read . 8
pb_releases . 9
pb_release_create . 10
pb_release_delete . 11
pb_upload . 11
pb_write . 12

Index 14

piggyback-package piggyback: Managing Larger Data on a GitHub Repository

Description

Because larger (> 50 MB) data files cannot easily be committed to git, a different approach
is required to manage data associated with an analysis in a GitHub repository. This package
provides a simple work-around by allowing larger (up to 2 GB) data files to piggyback on a
repository as assets attached to individual GitHub releases. These files are not handled by
git in any way, but instead are uploaded, downloaded, or edited directly by calls through
the GitHub API. These data files can be versioned manually by creating different releases.
This approach works equally well with public or private repositories. Data can be uploaded
and downloaded programmatically from scripts. No authentication is required to download
data from public repositories.

Author(s)

Maintainer: Carl Boettiger <cboettig@gmail.com> (ORCID) [copyright holder]
Authors:

• Tan Ho (ORCID)

Other contributors:

• Mark Padgham (ORCID) [contributor]
• Jeffrey O Hanson (ORCID) [contributor]
• Kevin Kuo (ORCID) [contributor]

https://orcid.org/0000-0002-1642-628X
https://orcid.org/0000-0001-8388-5155
https://orcid.org/0000-0003-2172-5265
https://orcid.org/0000-0002-4716-6134
https://orcid.org/0000-0001-7803-7901

.gh_api_url 3

See Also

Useful links:

• https://docs.ropensci.org/piggyback/

• https://github.com/ropensci/piggyback

• Report bugs at https://github.com/ropensci/piggyback/issues

.gh_api_url GitHub API URL

Description

Reads environment variable GITHUB_API_URL to determine base URL of API. Same as
gh package. Defaults to https://api.github.com.

Usage

.gh_api_url()

Value

string: API base url

See Also

https://gh.r-lib.org/#environment-variables

pb_delete Delete an asset attached to a release

Description

Delete an asset attached to a release

Usage

pb_delete(
file = NULL,
repo = guess_repo(),
tag = "latest",
.token = gh::gh_token()

)

https://docs.ropensci.org/piggyback/
https://github.com/ropensci/piggyback
https://github.com/ropensci/piggyback/issues
https://gh.r-lib.org/#environment-variables

4 pb_download

Arguments

file file(s) to be deleted from the release. If NULL (default when argument is
omitted), function will delete all attachments to the release. delete

repo string: GH repository name in format ”owner/repo”. Default guess_repo()
tries to guess based on current working directory’s git repository

tag string: tag for the GH release, defaults to ”latest”
.token GitHub authentication token, see gh::gh_token()

Value

TRUE (invisibly) if a file is found and deleted. Otherwise, returns NULL (invisibly) if no file
matching the name was found.

Examples
Not run:
readr::write_tsv(mtcars, "mtcars.tsv.gz")
Upload
pb_upload("mtcars.tsv.gz",

repo = "cboettig/piggyback-tests",
overwrite = TRUE)

pb_delete("mtcars.tsv.gz",
repo = "cboettig/piggyback-tests",
tag = "v0.0.1")

End(Not run)

pb_download Download data from an existing release

Description

Download data from an existing release

Usage

pb_download(
file = NULL,
dest = ".",
repo = guess_repo(),
tag = "latest",
overwrite = TRUE,
ignore = "manifest.json",
use_timestamps = TRUE,
show_progress = getOption("piggyback.verbose", default = interactive()),
.token = gh::gh_token()

)

pb_download 5

Arguments

file character: vector of names of files to be downloaded. If NULL, all assets
attached to the release will be downloaded.

dest character: path to destination directory (if length one) or vector of des-
tination filepaths the same length as file. Any directories in the path
provided must already exist.

repo string: GH repository name in format ”owner/repo”. Default guess_repo()
tries to guess based on current working directory’s git repository

tag string: tag for the GH release, defaults to ”latest”

overwrite boolean: should any local files of the same name be overwritten? default
TRUE

ignore character: vector of files to ignore (used if downloading ”all” via file=NULL)
use_timestamps

DEPRECATED.

show_progress logical, show a progress bar be shown for uploading? Defaults to interactive()
- can also set globally with options(”piggyback.verbose”)

.token GitHub authentication token, see gh::gh_token()

Examples

Download a specific file.
(if dest is omitted, will write to current directory)
dest <- tempdir()
piggyback::pb_download(

"iris.tsv.gz",
repo = "cboettig/piggyback-tests",
tag = "v0.0.1",
dest = dest

)
list.files(dest)
Download all files
piggyback::pb_download(

repo = "cboettig/piggyback-tests",
tag = "v0.0.1",
dest = dest

)
list.files(dest)

6 pb_download_url

pb_download_url Get the download url of a given file

Description

Returns the URL download for a given file. This can be useful when using functions that
are able to accept URLs.

Usage

pb_download_url(
file = NULL,
repo = guess_repo(),
tag = "latest",
url_type = c("browser", "api"),
.token = gh::gh_token()

)

Arguments

file character: vector of names of files to be downloaded. If NULL, all assets
attached to the release will be downloaded.

repo string: GH repository name in format ”owner/repo”. Default guess_repo()
tries to guess based on current working directory’s git repository

tag string: tag for the GH release, defaults to ”latest”
url_type choice: one of ”browser” or ”api” - default ”browser” is a web-facing

URL that is not subject to API ratelimits but does not work for private
repositories. ”api” URLs work for private repos, but require a GitHub
token passed in an Authorization header (see examples)

.token GitHub authentication token, see gh::gh_token()

Value

the URL to download a file

Examples

returns browser url by default (and all files if none are specified)
browser_url <- pb_download_url(

repo = "tanho63/piggyback-tests",
tag = "v0.0.2"
)

print(browser_url)
utils::read.csv(browser_url[[1]])

pb_list 7

can return api url if desired
api_url <- pb_download_url(

"mtcars.csv",
repo = "tanho63/piggyback-tests",
tag = "v0.0.2"
)

print(api_url)

for public repositories, this will still work
utils::read.csv(api_url)

for private repos, can use httr or curl to fetch and then pass into read function
gh_pat <- Sys.getenv("GITHUB_PAT")

if(!identical(gh_pat, "")){
resp <- httr::GET(api_url, httr::add_headers(Authorization = paste("Bearer", gh_pat)))
utils::read.csv(text = httr::content(resp, as = "text"))

}

or use pb_read which bundles some of this for you

pb_list List all assets attached to a release

Description

List all assets attached to a release

Usage

pb_list(repo = guess_repo(), tag = NULL, .token = gh::gh_token())

Arguments

repo string: GH repository name in format ”owner/repo”. Default guess_repo()
tries to guess based on current working directory’s git repository

tag which release tag(s) do we want information for? If NULL (default), will
return a table for all available release tags.

.token GitHub authentication token, see gh::gh_token()

Value

a data.frame of release asset names, release tag, timestamp, owner, and repo.

8 pb_read

See Also

pb_releases for a list of all releases in repository

Examples
Not run:
pb_list("cboettig/piggyback-tests")

End(Not run)

pb_read Read one file into memory

Description

A convenience wrapper around writing an object to a temporary file and then uploading to
a specified repo/release. This convenience comes at a cost to performance efficiency, since
it first downloads the data to disk and then reads the data from disk into memory. See
vignette("cloud_native") for alternative ways to bypass this flow and work with the
data directly.

Usage

pb_read(
file,
...,
repo = guess_repo(),
tag = "latest",
read_function = guess_read_function(file),
.token = gh::gh_token()

)

Arguments

file string: file name
... additional arguments passed to read_function after file
repo string: GH repository name in format ”owner/repo”. Default guess_repo()

tries to guess based on current working directory’s git repo
tag string: tag for the GH release, defaults to ”latest”
read_function function: used to read in the data, where the file is passed as the first

argument and any additional arguments are subsequently passed in via
.... Default guess_read_function(file) will check the file extension
and try to find an appropriate read function if the extension is one of rds,
csv, tsv, parquet, txt, or json, and will abort if not found.

.token GitHub authentication token, see gh::gh_token()

pb_releases 9

Value

Result of reading in the file in question.

See Also

Other pb_rw: guess_read_function(), guess_write_function(), pb_write()

Examples

try({ # try block is to avoid CRAN issues and is not required in ordinary usage
piggyback::pb_read("mtcars.tsv.gz", repo = "cboettig/piggyback-tests")

})

pb_releases List releases in repository

Description

This function retrieves information about all releases attached to a given repository.

Usage

pb_releases(
repo = guess_repo(),
.token = gh::gh_token(),
verbose = getOption("piggyback.verbose", default = TRUE)

)

Arguments

repo GitHub repository specification in the form of "owner/repo", if not spec-
ified will try to guess repo based on current working directory.

.token a GitHub API token, defaults to gh::gh_token()
verbose defaults to TRUE, use FALSE to silence messages

Value

a dataframe of all releases available within a repository.

Examples

try({ # wrapped in try block to prevent CRAN errors
pb_releases("nflverse/nflverse-data")

})

10 pb_release_create

pb_release_create Create a new release on GitHub repo

Description

Create a new release on GitHub repo

Usage

pb_release_create(
repo = guess_repo(),
tag,
commit = NULL,
name = tag,
body = "Data release",
draft = FALSE,
prerelease = FALSE,
.token = gh::gh_token()

)

Arguments

repo Repository name in format ”owner/repo”. Will guess the current repo if
not specified.

tag tag to create for this release
commit Specifies the commit-ish value that determines where the Git tag is cre-

ated from. Can be any branch or full commit SHA (not the short hash).
Unused if the git tag already exists. Default: the repository’s default
branch (usually master).

name The name of the release. Defaults to tag.
body Text describing the contents of the tag. default text is ”Data release”.
draft default FALSE. Set to TRUE to create a draft (unpublished) release.
prerelease default FALSE. Set to TRUE to identify the release as a pre-release.
.token GitHub authentication token, see [gh::gh_token()]

See Also

Other release_management: pb_release_delete()

Examples
Not run:
pb_release_create("cboettig/piggyback-tests", "v0.0.5")

End(Not run)

pb_release_delete 11

pb_release_delete Delete release from GitHub repo

Description

Delete release from GitHub repo

Usage

pb_release_delete(repo = guess_repo(), tag, .token = gh::gh_token())

Arguments

repo Repository name in format ”owner/repo”. Defaults to guess_repo().
tag tag name to delete. Must be one of those found in pb_releases()$tag_name.
.token GitHub authentication token, see [gh::gh_token()]

See Also

Other release_management: pb_release_create()

Examples
Not run:
pb_release_delete("cboettig/piggyback-tests", "v0.0.5")

End(Not run)

pb_upload Upload data to an existing release

Description

NOTE: you must first create a release if one does not already exists.

Usage

pb_upload(
file,
repo = guess_repo(),
tag = "latest",
name = NULL,
overwrite = "use_timestamps",
use_timestamps = NULL,
show_progress = getOption("piggyback.verbose", default = interactive()),
.token = gh::gh_token(),
dir = NULL

)

12 pb_write

Arguments

file string: path to file to be uploaded
repo string: GH repository name in format ”owner/repo”. Default guess_repo()

tries to guess based on current working directory’s git repository
tag string: tag for the GH release, defaults to ”latest”
name string: name for uploaded file. If not provided will use the basename of

file (i.e. filename without directory)
overwrite choice: overwrite any existing file with the same name already attached to

the on release? Options are ”use_timestamps”, TRUE, or FALSE: default
”use_timestamps” will only overwrite files where the release timestamp
is newer than the local file.

use_timestamps
DEPRECATED.

show_progress logical, show a progress bar be shown for uploading? Defaults to interactive()
- can also set globally with options(”piggyback.verbose”)

.token GitHub authentication token, see gh::gh_token()
dir directory relative to which file names should be based, defaults to NULL

for current working directory.

Examples
Not run:
Needs your real token to run

readr::write_tsv(mtcars,"mtcars.tsv.xz")
pb_upload("mtcars.tsv.xz", "cboettig/piggyback-tests")

End(Not run)

pb_write Write one object to repo/release

Description

A convenience wrapper around writing an object to a temporary file and then uploading to
a specified repo/release.

Usage

pb_write(
x,
file,
...,
repo = guess_repo(),
tag = "latest",
write_function = guess_write_function(file),
.token = gh::gh_token()

)

pb_write 13

Arguments

x object: memory object to save to piggyback
file string: file name
... additional arguments passed to write_function
repo string: GH repository name in format ”owner/repo”. Default guess_repo()

tries to guess based on current working directory’s git repo
tag string: tag for the GH release, defaults to ”latest”
write_function

function: used to write an R object to file, where the object is passed as the
first argument, the filename as the second argument, and any additional
arguments are subsequently passed in via Default guess_write_function(file)
will check the file extension and try to find an appropriate write function
if the extension is one of rds, csv, tsv, parquet, txt, or json, and will abort
if not found.

.token GitHub authentication token, see gh::gh_token()

Value

Writes file to release and returns github API response

See Also

Other pb_rw: guess_read_function(), guess_write_function(), pb_read()

Examples

pb_write(mtcars, "mtcars.rds", repo = "tanho63/piggyback-tests")
#> � Uploading to latest release: "v0.0.2".
#> � Uploading mtcars.rds ...
#> |===| 100%

Index

∗ pb_rw
pb_read, 8
pb_write, 12

∗ release_management
pb_release_create, 10
pb_release_delete, 11

.gh_api_url, 3

gh::gh_token(), 4–8, 12, 13
guess_read_function, 9, 13
guess_write_function, 9, 13

interactive(), 5, 12

pb_delete, 3
pb_download, 4
pb_download_url, 6
pb_list, 7
pb_new_release (pb_release_create),

10
pb_read, 8, 13
pb_release_create, 10, 11
pb_release_delete, 10, 11
pb_releases, 9
pb_upload, 11
pb_write, 9, 12
piggyback (piggyback-package), 2
piggyback-package, 2

14

	piggyback-package
	.gh_api_url
	pb_delete
	pb_download
	pb_download_url
	pb_list
	pb_read
	pb_releases
	pb_release_create
	pb_release_delete
	pb_upload
	pb_write
	Index

