Package: rnoaa (via r-universe)

July 12, 2024

Title 'NOAA' Weather Data from R

Description Client for many 'NOAA' data sources including the ' NCDC'
climate 'API'" at
<https://www.ncdc.noaa.gov/cdo-web/webservices/v2>, with
functions for each of the 'API' 'endpoints": data, data
categories, data sets, data types, locations, location
categories, and stations. In addition, we have an interface for
'NOAA' sea ice data, the ' NOAA' severe weather inventory,

'NOAA' Historical Observing 'Metadata' Repository (HOMR')
data, 'NOAA' storm data via 'IBTrACS', tornado data via the
'NOAA' storm prediction center, and more.

Version 1.4.0

License MIT + file LICENSE
Encoding UTF-8

Language en-US

URL https://docs.ropensci.org/rnoaa/ (docs),
https://github.com/ropensci/rnoaa (devel)

BugReports https://github.com/ropensci/rnoaa/issues
LazyData true
Roxygen list(markdown = TRUE)

Imports utils, crul (>=0.7.0), lubridate, dplyr, tidyr, tidyselect,
ggplot2, scales, XML, xml2, jsonlite, gridExtra, tibble,
isdparser (>= 0.2.0), geonames, hoardr (>= 0.5.2), data.table

Suggests roxygen2 (>=7.1.0), testthat, taxize, ncdf4, raster,
leaflet, rgdal, purrr, ver (>= 0.5.4), webmockr

RoxygenNote 7.2.1
X-schema.org-applicationCategory Climate

X-schema.org-keywords earth, science, climate, precipitation,
temperature, storm, buoy, NCDC, NOAA, tornadoe, sea ice, ISD

X-schema.org-isPartOf https://ropensci.org

https://www.ncdc.noaa.gov/cdo-web/webservices/v2
https://docs.ropensci.org/rnoaa/
https://github.com/ropensci/rnoaa
https://github.com/ropensci/rnoaa/issues

2 Contents

Repository https://ropensci.r-universe.dev

RemoteUrl https://github.com/ropensci/rnoaa

RemoteRef master

RemoteSha 95868c968c62768fe7e8143a8f631b97de120910

Contents
MNoaa-package o o e e e e e e e e e e e 3
AMC2 . . e e e e e 5
autoplot_MeteO_COVETAZE v v v v v v e e e e e e e e e e e e e e 6
DSW . e e 7
DUOY . . o o e e e e e e e e 8
COOPS v v e e e e e e e e e e e e e e e e e 10
CPC_PICP « « v v e e e e e e e e e e e e e e e e e e 14
BISSE . v o o e e e e e e e e e e e e e 15
fipscodes e e e 16
ghend .. L L e e 17
ghend_search oL L 19
ghend_splitvars L . oL e e e e 21
ghend_states L L e e e e e 22
ghend_stations L e e e e 23
homr e e e e e 24
homr_definitions e 26
IS . . e e e 27
isd_read L e e e e e 30
ISA_Stations e e e e e e e e e e e e e e 31
isd_stations_search 33
Ied . . e 34
meteo_clear_cache 36
MEEO_COVETAZE . . « . v v v v v e v e 36
meteo_diStance e e e 37
meteo_nearby_stations L. Lo e e 39
meteo_process_geographic_data L Lo 41
meteo_pull_monitors L. e e 43
meteo_show_cache e 45
meteo_spherical_distanceo 46
meteo_tidy_ghendo Lo 47
meteo_tidy_ghend_elemento Lo oL oL 49
NCdC . . .o e e e 50
nedc_combine 54
nede_datacats L s 56
ncde_datasets L. . L e e e e e e 58
nede_datatypes e 60
nede 1oCS L e 63
nede_locs_cats e 65
nede_plot . . L 67

nede_StationS e e e s 68

rnoaa-package 3

rnoaa-defunct L e e 71
rnoaa_caching e e 72
TNOAA_OPLONS o vt e it e e e e e e e e e e e 74
SEA_ICE .+ v o e e e e e e e s, 74
sea_ice tabular L 76
SEOIML_EVENLS v v v o o e e e e e e e e e e e e 77
SWAL . . . e 78
tornadoes e e e 81
VIS_IMISS & v v v v v e e e e e e e e e e e e e 82

Index 83

rnoaa-package rnoaa
Description

rnoaa is an R interface to NOAA climate data.

Data Sources

Many functions in this package interact with the National Climatic Data Center application pro-
gramming interface (API) at https://www.ncdc.noaa.gov/cdo-web/webservices/v2, all of which func-
tions start with ncdc_. An access token, or API key, is required to use all the ncdc_ functions. The
key is required by NOAA, not us. Go to the link given above to get an API key.

More NOAA data sources are being added through time. Data sources and their function prefixes
are:

* buoy_* - NOAA Buoy data from the National Buoy Data Center

* ghend_x/meteo_x - GHCND daily data from NOAA

* isd_x - ISD/ISH data from NOAA

* homr_* - Historical Observing Metadata Repository (HOMR) vignette

* ncdc_* - NOAA National Climatic Data Center (NCDC) vignette (examples)

* sea_ice - Sea ice vignette

e storm_ - Storms (IBTrACS) vignette

* swdi - Severe Weather Data Inventory (SWDI) vignette

* tornadoes - From the NOAA Storm Prediction Center

e coops_search - NOAA CO-OPS - tides and currents data

e cpc_prcp - rainfall data from the NOAA Climate Prediction Center (CPC)

* arc?2 - rainfall data from Africa Rainfall Climatology version 2

¢ bsw - Blended sea winds (BSW)

* ersst - NOAA Extended Reconstructed Sea Surface Temperature (ERSST) data
* lcd - Local Climitalogical Data from NOAA

4 rnoaa-package

Where data comes from and government shutdowns

Government shutdowns can greatly affect data sources in this package. The following is a break-
down of the functions that fetch data by HTTP vs. FTP - done this way as we’ve noticed that during
the ealry 2019 border wall shutdown most FTP services were up, while those that were down were
HTTP; though not all HTTP services were down.

* HTTP info: https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

* FTP info: https://en.wikipedia.org/wiki/File_Transfer_Protocol

HTTP services (whether service is/was up or down during early 2019 shutdown)
* buoy_* - Up
e homr_* - Up
* ncdc_* - Down
* swdi - Down
* tornadoes - Down
* coops_search - Up
* ersst - Down
* lcd - Down
* se_* - Down
FTP services (whether service is/was up or down during early 2019 shutdown)
e ghcend_x - Up
e isd_x-Up
* sea_ice-Up
e storm_- Up
e cpc_prcp - Up
e arc2-Up
* bsw-Up
We’ve tried to whenever possible detect whether a service is error due to a government shutdown

and give a message saying so. If you know a service is down that rnoaa interacts with but we don’t
fail well during a shutdown let us know.

A note about NCDF data
Some functions use netcdf files, including:

* ersst

* buoy

* bsw
You’ll need the ncdf4 package for those functions, and those only. ncdf4 is in Suggests in this
package, meaning you only need ncdf4 if you are using any of the functions listed above. You’ll

get an informative error telling you to install ncdf4 if you don’t have it and you try to use the those
functions. Installation of ncdf4 should be straightforward on any system.

arc2 5

The meteo family of functions

The meteo family of functions are prefixed with meteo_ and provide a set of helper functions to:

* Identify candidate stations from a latitude/longitude pair

* Retrieve complete data for one or more stations (meteo_coverage())

arc2 Arc2 - Africa Rainfall Climatology version 2

Description

Arc2 - Africa Rainfall Climatology version 2

Usage
arc2(date, box = NULL, ...)
Arguments
date (character/date) one or more dates of the form YYYY-MM-DD
box (numeric) vector of length 4, of the form xmin, ymin, xmax, ymax. optional.
If not given, no spatial filtering is done. If given, we use dplyr::filter() on
a combined set of all dates, then split the output into tibbles by date
curl options passed on to crul::verb-GET
Value

a list of tibbles with columns:

* date: date (YYYY-MM-DD)
* lon: longitude
e lat: latitude

* precip: precipitation (mm)

box parameter

The box parameter filters the arc2 data to a bounding box you supply. The function that does the
cropping to the bounding box is dplyr::filter. You can do any filtering you want on your own if
you do not supply box and then use whatever tools you want to filter the data by lat/lon, date, precip
values.

Note

See arc2_cache for managing cached files

6 autoplot_meteo_coverage

References

docs: https://ftp.cpc.ncep.noaa.gov/fews/fewsdata/africa/arc2/ARC2_readme.txt

Examples

Not run:
X = arc2(date = "1983-01-01")
arc2(date = "2017-02-14")

many dates

arc2(date = c("2019-05-27", "2019-05-28"))
arc2(seq(as.Date("2019-04-21"), by = "day"”, length.out = 5))

combine outputs

X <- arc2(seq(as.Date("2019-05-20"), as.Date("2019-05-25"), "days"))
dplyr: :bind_rows(x)

bounding box filter

box <- c(xmin = 9, ymin = 4, xmax = 10, ymax = 5)

arc2(date = "2017-02-14", box = box)

arc2(date = c("2019-05-27", "2019-05-28"), box = box)
arc2(seq(as.Date("2019-05-20"), as.Date("2019-05-25"), "days"), box = box)

End(Not run)

autoplot_meteo_coverage
autoplot method for meteo_coverage objects

Description

autoplot method for meteo_coverage objects

Usage

autoplot_meteo_coverage(meteo_object, old_style = FALSE)

Arguments

meteo_object the object returned from meteo_coverage()

old_style (logical) create the old style of plots, which is faster, but does not plot gaps to
indicate missing data

Details

see meteo_coverage() for examples.

Value

A ggplot2 plot

bsw 7

bsw Blended sea winds (BSW)

Description

The Blended Sea Winds dataset contains globally gridded, high-resolution ocean surface vector
winds and wind stresses on a global 0.25° grid, and multiple time resolutions of six-hourly, daily,
monthly, and 11-year (1995-2005) climatological monthlies.

Usage
bsw(date = NULL, uv_stress = "uv”, resolution = "6hrly”, ...)
Arguments
date (date/character) date, in the form YYYY-MM-DD if resolution is 6hrly or daily,
or in the form YYYY-MM if resolution is monthly. For resolution=clm can be
left NULL. If given, must be in the range 1987-07-09 to today-1 (yesterday)
uv_stress (character) one of uv or stresss, not sure what these mean exactly yet. Default:
uv
resolution (character) temporal resolution. one of 6hrly, clm, daily, or monthly. See De-
tails.
curl options passed on to crul::verb-GET
Details

Products are available from July 9th, 1987 - present.
Uses ncdf4 under the hood to read NetCDF files

Value

an object of class ncdf4

Citing NOAA and BSW data

Message from NOAA: "We also ask you to acknowledge us in your use of the data to help us justify
continued service. This may be done by including text such as: The wind data are acquired from
NOAA’s National Climatic Data Center, via their website We would also appreciate receiving a
copy of the relevant publication."

Temporal resolution

* 6hrly: 6-hourly, 4 global snapshots (u,v) at UTC 00, 06, 12 and 18Z
* clm: climatological monthlies; also provided is the scalar mean (u,v,w)

* daily: averages of the 6hrly time points, thus with a center time 09Z; also provided is the
scalar mean, (u,v,w)

» monthly: averages of daily data; also provided is the scalar mean (u,v,w)

8 buoy

Note

See bsw_cache for managing cached files

We only handle the netcdf files for now, we’re avoiding the ieee files, see https://www.cpc.ncep.noaa.gov/products/wesley/wg:

References

https://www.ncdc.noaa.gov/data-access/marineocean-data/blended-global/blended-sea-winds

Examples

Not run:

6hrly data

uv

X <- bsw(date = "2017-10-01")

stress

y <- bsw(date = "2011-08-01", uv_stress = "stress")

daily
z <- bsw(date = "2017-10-01", resolution = "daily")

monthly
w <- bsw(date = "2011-08", resolution = "monthly")

clm
x <- bsw(resolution = "clm")

H+

End(Not run)

buoy Get NOAA buoy data from the National Buoy Data Center

Description

Get NOAA buoy data from the National Buoy Data Center

Usage

buoy(dataset, buoyid, year = NULL, datatype = NULL, ...)
buoys(dataset)

buoy_stations(refresh = FALSE, ...)

buoy 9
Arguments
dataset (character) Dataset name to query. See below for Details. Required
buoyid Buoy ID, can be numeric/integer/character. Required
year (integer) Year of data collection. Optional. Note there is a special value 9999
that, if found, contains the most up to date data.
datatype (character) Data type, one of ’¢’, ’cc’, ’p’, "0’. Optional
Curl options passed on to crul::verb-GET Optional. A number of different HTTP
requests are made internally, but we only pass this on to the request to get the
netcdf file in the internal function get_ncdf_file()
refresh (logical) Whether to use cached data (FALSE) or get new data (FALSE). Default:
FALSE
Details
Functions:

buoy_stations - Get buoy stations. A cached version of the dataset is available in the package.
Beware, takes a long time to run if you do refresh = TRUE

buoys - Get available buoys given a dataset name

buoy - Get data given some combination of dataset name, buoy ID, year, and datatype

Options for the dataset parameter. One of:

Value

adcp - Acoustic Doppler Current Profiler data

adcp2 - MMS Acoustic Doppler Current Profiler data

cwind - Continuous Winds data

dart - Deep-ocean Assessment and Reporting of Tsunamis data
mmbcur - Marsh-McBirney Current Measurements data

ocean - Oceanographic data

pwind - Peak Winds data

stdmet - Standard Meteorological data

swden - Spectral Wave Density data with Spectral Wave Direction data

wlevel - Water Level data

If netcdf data has lat/lon variables, then we’ll parse into a tidy data.frame. If not, we’ll give back
the ncdf4 object for the user to parse (in which case the data.frame will be empty).

References

http://www.ndbc.noaa.gov/, http://dods.ndbc.noaa.gov/

10 coops

Examples

Not run:
if (crul::ok("https://dods.ndbc.noaa.gov/thredds”, timeout_ms = 1000)) {

Get buoy station information

x <- buoy_stations()

refresh stations as needed, takes a while to run
you shouldn't need to update very often

x <- buoy_stations(refresh = TRUE)

if (interactive() && requireNamespace("leaflet")){
library("leaflet")

z <- leaflet(data = na.omit(x))

z <- leaflet::addTiles(z)

leaflet::addCircles(z, ~lon, ~lat, opacity = 0.5)
3

year=9999 to get most current data - not always available
buoy(dataset = "swden”, buoyid = 46012, year = 9999)

Get available buoys
buoys(dataset = 'cwind')

Get data for a buoy
if no year or datatype specified, we get the first file
buoy(dataset = 'cwind', buoyid = 46085)

Including specific year
buoy(dataset = 'cwind', buoyid = 41001, year = 1999)

Including specific year and datatype
buoy(dataset = 'cwind', buoyid = 45005, year = 2008, datatype = "c"
buoy(dataset = 'cwind', buoyid = 41001, year = 1997, datatype

Other datasets
buoy(dataset = 'ocean', buoyid = 41029)

curl debugging
buoy(dataset = 'cwind', buoyid = 46085, verbose = TRUE)

some buoy ids are character, case doesn't matter, we'll account for it
buoy(dataset = "stdmet”, buoyid = "VCAF1")

buoy(dataset = "stdmet”, buoyid = "wplf1")
buoy(dataset = "dart"”, buoyid = "dartu")

3

End(Not run)

coops Get NOAA co-ops data

coops

Description

11

Get NOAA co-ops data

Usage

coops_search(

begin_date = NULL,
end_date = NULL,
station_name = NULL,
product,
datum = NULL,
units = "metric”,
time_zone "gmt”,
application = "rnoaa”,
)
Arguments
begin_date (numeric) Date in yyyymmdd format. Required
end_date (numeric) Date in yyyymmdd format. Required

station_name
product
datum

units

time_zone

application

Details

(numeric) a station name. Required

(character) Specify the data type. See below for Details. Required

(character) See below for Details. Required for all water level products.
(character) Specify metric or english (imperial) units, one of *metric’, ’english’.

(character) Time zone, one of gmt’, ’Ist’, ’Ist_1dt’. For GMT, we convert time
stamps to GMT. For LST, we look up the time zone of the station with its lat/lon
values, and assign that time zone. When product="predictions” we don’t
adjust times at all.

(character) If called within an external package, set to the name of your organi-
zation. Optional

Curl options passed on to crul::verb-GET Optional

Options for the product paramter. One of:

» water_level - Preliminary or verified water levels, depending on availability

* air_temperature - Air temperature as measured at the station

* water_temperature - Water temperature as measured at the station

* wind - Wind speed, direction, and gusts as measured at the station

* air_pressure - Barometric pressure as measured at the station

* air_gap - Air Gap (distance between a bridge and the water’s surface) at the station

* conductivity - The water’s conductivity as measured at the station

12

coops

visibility - Visibility from the station’s visibility sensor. A measure of atmospheric clarity
humidity - Relative humidity as measured at the station

salinity - Salinity and specific gravity data for the station

one_minute_water_level - One minute water level data for the station

predictions - 6 minute predictions water level data for the station

hourly_height - Verified hourly height water level data for the station

high_low - Verified high/low water level data for the station

daily_mean - Verified daily mean water level data for the station

monthly_mean - Verified monthly mean water level data for the station

datums - datums data for the stations

currents - Currents data for currents stations

Maximum Durations in a Single Call:

Products water_level through predictions allow requests for up to
Products hourly_height and high_low allow requests for up to

Products daily_mean and monthly_mean allow requests for up to

Options for the datum parameter. One of:

Value

List,

MHHW - Mean higher high water
MHW - Mean high water

MTL - Mean tide level

MSL - Mean sea level

MLW - Mean low water

MLLW - Mean lower low water

NAVD - North American Vertical Datum
STND - Station datum

of length one or two.

metadata A list of metadata with slots id, name, lat, lon

data A data.frame with data

Author(s)

Scott Chamberlain, Joseph Stachelek, Tom Philippi

References

https://tidesandcurrents.noaa.gov/api/ https://tidesandcurrents.noaa.gov/map/

coops

Examples

Not run:

Get monthly mean sea level data at Vaca Key (8723970)

coops_search(station_name = 8723970, begin_date = 20120301,
end_date = 20141001, datum = "stnd”, product = "monthly_mean")

Get verified water level data at Vaca Key (8723970)
coops_search(station_name = 8723970, begin_date = 20140927,
end_date = 20140928, datum = "stnd"”, product = "water_level")

Get daily mean water level data at Fairport, OH (9063053)

coops_search(station_name = 9063053, begin_date = 20150927,
end_date = 20150928, product = "daily_mean”, datum = "stnd",
time_zone = "1lst")

Get air temperature at Vaca Key (8723970)
coops_search(station_name = 8723970, begin_date = 20140927,
end_date = 20140928, product = "air_temperature”)

Get water temperature at Vaca Key (8723970)
coops_search(station_name = 8723970, begin_date = 20140927,
end_date = 20140928, product = "water_temperature”)

Get air pressure at Vaca Key (8723970)
coops_search(station_name = 8723970, begin_date = 20140927,
end_date = 20140928, product = "air_pressure”)

Get wind at Vaca Key (8723970)
coops_search(station_name = 8723970, begin_date = 20140927,
end_date = 20140928, product = "wind")

Get hourly water level height at Key West (8724580)
coops_search(station_name = 8724580, begin_date = 20140927,
end_date = 20140928, product = "hourly_height”, datum = "stnd")

Get high-low water level at Key West (8724580)
coops_search(station_name = 8724580, begin_date = 20140927,
end_date = 20140928, product = "high_low", datum = "stnd")

Get currents data at Pascagoula Harbor (ps@401)
coops_search(station_name = "ps0401", begin_date = 20151221,
end_date = 20151222, product = "currents")

Get one-minute water level at Vaca Key (8723970)
coops_search(station_name = 8723970, begin_date = 20140927,
end_date = 20140928, datum = "stnd”, product = "one_minute_water_level")

Get datums at Fort Myers, FL (8725520)
coops_search(station_name = 8725520, product = "datums")

Get water level predictions at Vaca Key (8723970)
coops_search(station_name = 8723970, begin_date = 20140928,

14

cpc_prep
end_date = 20140929, datum = "stnd"”, product = "predictions”)
End(Not run)
cpc_prep Precipitation data from NOAA Climate Prediction Center (CPC)

Description

Precipitation data from NOAA Climate Prediction Center (CPC)

Usage
cpc_prcp(date, us = FALSE, drop_undefined = FALSE, ...)
Arguments
date (date/character) date in YYYY-MM-DD format
us (logical) US data only? default: FALSE

drop_undefined (logical) drop undefined precipitation values (values in the precip column in
the output data.frame). default: FALSE

curl options passed on to crul::verb-GET

Details

Rainfall data for the world (1979-present, resolution 50 km), and the US (1948-present, resolution
25 km).

Value
a data.frame, with columns:
* lon - longitude (0 to 360)

e lat - latitude (-90 to 90)

* precip - precipitation (in mm) (see Details for more information)

Data processing in this function

Internally we multiply all precipitation measurements by 0.1 as per the CPC documentation.

Values of -99.0 are classified as "undefined". These values can be removed by setting drop_undefined
= TRUE in the cpc_prcp function call. These undefined values are not dropped by default - so do

remember to set drop_undefined = TRUE to drop them; or you can easily do it yourself by e.g.,
subset(x, precip >=0)

ersst 15

Note

See cpc_cache for managing cached files

References

https://www.cpc.ncep.noaa.gov/ https://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP https://ftp.cpc.ncep.noaa.gov/precip/
https:/ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/GAUGE_GLB/DOCU/PRCP_CU_GAUGE_V1.0GLB_0.50deg_RE
https://psl.noaa.gov/data/gridded/data.unified.daily.conus.html

Examples

Not run:

X = cpc_prcp(date = "2017-01-15")
cpc_prcp(date = "2015-06-05")
cpc_prcp(date = "2017-01-15")
cpc_prcp(date = "2005-07-09")
cpc_prcp(date = "1979-07-19")

United States data only

cpc_prcp(date = "2005-07-09", us = TRUE)
cpc_prcp(date = "2009-08-03", us = TRUE)
cpc_prcp(date = "1998-04-23", us = TRUE)

drop undefined values (those given as -99.0)
cpc_prcp(date = "1998-04-23", drop_undefined = TRUE)

End(Not run)

ersst NOAA Extended Reconstructed Sea Surface Temperature (ERSST)
data

Description

NOAA Extended Reconstructed Sea Surface Temperature (ERSST) data

Usage
ersst(year, month, overwrite = TRUE, version = "v5", ...)
Arguments
year (numeric) A year. Must be > 1853. The max value is whatever the current year
is. Required
month A month, character or numeric. If single digit (e.g. 8), we add a zero in front
(e.g., 08). Required
overwrite (logical) To overwrite the path to store files in or not, Default: TRUE
version (character) ERSST version. one of "v5" (default) or "v4"

Curl options passed on to crul::verb-GET

16 fipscodes

Details
See ersst_cache for managing cached files
ersst() currently defaults to use ERSST v5 - you can set v4 or v5 using the version parameter
If a request is unsuccesful, the file written to disk is deleted before the function exits.

If you use this data in your research please cite rnoaa (citation(”rnoaa"”)), and cite NOAA
ERSST (see citations at link above)

Value

An ncdf4 object. See ncdf4 for parsing the output

References

https://www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-sea-surface-temperature-
ersst-v5

Examples

Not run:
October, 2015
ersst(year = 2015, month = 10)

May, 2015
ersst(year = 2015, month = 5)
ersst(year = 2015, month = "@5")

February, 1890
ersst(year = 1890, month

2)

Process data

library("ncdf4")

res <- ersst(year = 1890, month = 2)
varibles

names(res$var)

get a variable
ncdf4::ncvar_get(res, "ssta")

End(Not run)

fipscodes FIPS codes for US states.

Description

A dataset containing the FIPS codes for 51 US states and territories. The variables are as follows:

ghend 17

Format

A data frame with 3142 rows and 5 variables

Details

* state. US state name.

e county. County name.

* fips_state. Numeric value, from 1 to 51.

* fips_county. Numeric value, from 1 to 840.

e fips. Numeric value, from 1001 to 56045.

ghend Get all GHCND data from a single weather site

Description

This function uses ftp to access the Global Historical Climatology Network daily weather data from
NOAA'’s FTP server for a single weather site. It requires the site identification number for that site
and will pull the entire weather dataset for the site.

Usage

ghcnd(stationid, refresh = FALSE, ...)

ghend_read(path, ...)

Arguments

stationid (character) A character vector giving the identification of the weather stations for
which the user would like to pull data. To get a full and current list of stations,
the user can use the ghcnd_stations() function. To identify stations within
a certain radius of a location, the user can use the meteo_nearby_stations()
function.

refresh (logical) If TRUE force re-download of data. Default: FALSE

In the case of ghcnd () additional curl options to pass through to crul::HttpClient.
In the case of ghcnd_read further options passed on to read.csv

path (character) a path to a file with a . dly extension - already downloaded on your
computer

18 ghend

Details

This function saves the full set of weather data for the queried site locally in the directory specified
by the path argument.

You can access the path for the cached file via attr(x, "source™)
You can access the last modified time for the cached file via attr(x, "file_modified")

Messages are printed to the console about file path and file last modified time which you can sup-
press with suppressMessages()

For those station ids that are not found, we will delete the file locally so that a bad station id file is
not cached. The returned data for a bad station id will be an empty data.frame and the attributes are
empty strings.

Value

A tibble (data.frame) which contains data pulled from NOAA’s FTP server for the queried weather
site. A README file with more information about the format of this file is available from NOAA
(https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/readme.txt). This file is formatted so each line
of the file gives the daily weather observations for a single weather variable for all days of one
month of one year. In addition to measurements, columns are included for certain flags, which add
information on observation sources and quality and are further explained in NOAA’s README file
for the data.

Base URL

The base url for data requests can be changed. The allowed urls are: https://www 1.ncdc.noaa.gov/pub/data/ghcn/daily/all
(default), https://ncei.noaa.gov/pub/data/ghcn/daily/all

You can set the base url using the RNOAA_GHCND_BASE_URL environment variable; see example
below.

The reason for this is that sometimes one base url source is temporarily down, but another base url
may work. It doesn’t make sense to allow an arbitrary base URL; open an issue if there is another
valid base URL for GHNCD data that we should add to the allowed set of base urls.

Note

See ghend_cache for managing cached files

Author(s)

Scott Chamberlain <myrmecocystus@gmail.com>, Adam Erickson <adam.erickson@ubc.ca>

See Also

To generate a weather dataset for a single weather site that has been cleaned to a tidier weather
format, the user should use the ghcnd_search() function, which calls ghcnd () and then processes
the output, or meteo_tidy_ghcnd(), which wraps the ghcnd_search() function to output a tidy
dataframe. To pull GHCND data from multiple monitors, see meteo_pull_monitors()

ghend_search 19

Examples

Not run:
Get data
ghend(stationid = "AGEQQ147704")

stations <- ghcnd_stations()
ghcnd(stations$id[40])

library("dplyr")
ghcnd(stations$id[80300]) %>% select(id, element) %>% slice(1:3)

manipulate data

using built in fxns

dat <- ghcnd(stationid = "AGEQ@147704")
(alldat <- ghcnd_splitvars(dat))

using dplyr

library("dplyr")

dat <- ghcnd(stationid = "AGE0Q147704")
filter(dat, element == "PRCP", year == 1909)

refresh the cached file
ghcnd(stationid = "AGE@Q@147704", refresh = TRUE)

Read in a .dly file you've already downloaded
path <- system.file("examples/AGE@Q147704.dly", package = "rnoaa")
ghcend_read(path)

change the base url for data requests

Sys.setenv(RNOAA_GHCND_BASE_URL =
"https://ncei.noaa.gov/pub/data/ghcn/daily/all")

ghcnd(stations$id[45], verbose = TRUE)

must be in the allowed set of urls

Sys.setenv(RNOAA_GHCND_BASE_URL = "https://google.com")

ghend(stations$id[58], verbose = TRUE)

End(Not run)

ghcnd_search Get a cleaned version of GHCND data from a single weather site

Description

This function uses ftp to access the Global Historical Climatology Network daily weather data from
NOAA’s FTP server for a single weather monitor site. It requires the site identification number for
that site and will pull the entire weather dataset for the site. It will then clean this data to convert it
to a tidier format and will also, if requested, filter it to a certain date range and to certain weather
variables.

20 ghend_search

Usage

ghcnd_search(
stationid,
date_min = NULL,
date_max = NULL,
var = "all",
refresh = FALSE,

Arguments

stationid (character) A character vector giving the identification of the weather stations for
which the user would like to pull data. To get a full and current list of stations,
the user can use the ghcnd_stations() function. To identify stations within
a certain radius of a location, the user can use the meteo_nearby_stations()
function.

date_min A character string giving the earliest date of the daily weather time series that
the user would like in the final output. This character string should be formatted
as "yyyy-mm-dd". If not specified, the default is to keep all daily data for the
queried weather site from the earliest available date.

date_max A character string giving the latest date of the daily weather time series that the
user would like in the final output. This character string should be formatted
as "yyyy-mm-dd". If not specified, the default is to keep all daily data for the
queried weather site through the most current available date.

var A character vector specifying either "all” (pull all available weather parameters

for the site) or the weather parameters to keep in the final data (e.g., c("TMAX",
"TMIN") to only keep maximum and minimum temperature). Example choices
for this argument include:

* PRCP: Precipitation, in tenths of millimeters

* TAVG: Average temperature, in tenths of degrees Celsius

* TMAX: Maximum temperature, in tenths of degrees Celsius

e TMIN: Minimum temperature, in tenths of degrees Celsius
A full list of possible weather variables is available in NOAA’s README file for
the GHCND data (https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/readme.txt).
Most weather stations will only have a small subset of all the possible weather

variables, so the data generated by this function may not include all of the vari-
ables the user specifies through this argument.

refresh (logical) If TRUE force re-download of data. Default: FALSE
In the case of ghcnd () additional curl options to pass through to crul::HttpClient.

In the case of ghcnd_read further options passed on to read.csv
Details

Messages are printed to the console about file path, file last modified time which you can suppress
with suppressMessages()

ghend_splitvars

Value

21

A list object with slots for each of the available specified weather variables. Each element in the
list is a separate time series dataframe with daily observations, as well as flag values, for one of the
weather variables. The flag values give information on the quality and source of each observation;
see the NOAA README file linked above for more information. Each data.frame is sorted by date,

with the earliest date first.

Note

This function calls ghcnd (), which will download and save data from all available dates and weather
variables for the queried weather station. The step of limiting the dataset to only certain dates and /
or weather variables, using the date_min, date_max, and var arguments, does not occur until after

the full data has been pulled.

Author(s)

Scott Chamberlain <myrmecocystus@gmail.com>, Adam Erickson <adam.erickson@ubc.ca>

See Also

meteo_pull_monitors(), meteo_tidy_ghcnd()

Examples

Not run:

Search based on variable and/or

ghcnd_search("AGEQQ147704",
ghcnd_search("AGEQQ147704",
ghcnd_search("AGEQ@147704",
ghcnd_search("AGEQQ147704",

var

var =
var =

var

date

"PRCP")

"PRCP", date_min
"PRCP", date_max
"PRCP", date_min

date_max = "1925-01-01")
date_min = "1920-01-01",

ghcnd_search("AGEQ@147704",
ghcnd_search("AGEQQ147704",
ghcnd_search("AGEQQ147704",
ghcnd_search("AGEQ@147704",

refresh the cached file
ghcnd_search("AGEQ@147704",

End(Not run)

var
var
var

var

c("PRCP","TMIN"))

"1920-01-01")
"1915-01-01")
"1920-01-01",

date_max = "1925-01-01")

c("PRCP","TMIN"), date_min = "1920-01-01")

"adfdf")

"PRCP", refresh = TRUE)

ghend_splitvars

Split variables in data returned from ghcnd

Description

This function is a helper function for ghcnd_search(). It helps with cleaning up the data returned
from ghcnd(), to get it in a format that is easier to work with.

22 ghend_states

Usage
ghcnd_splitvars(x)

Arguments

X An object returned from ghcnd()

Note

See ghend () examples

Author(s)

Scott Chamberlain, Adam Erickson, Elio Campitelli

ghcnd_states Get meta-data on the GHCND daily data

Description

These function allow you to pull the current versions of certain meta-datasets for the GHCND,
including lists of country and state abbreviations used in some of the weather station IDs and infor-
mation about the current version of the data.

Usage
ghcnd_states(...)

ghcnd_countries(...)

ghend_version(...)

Arguments
In the case of ghcnd () additional curl options to pass through to crul::HttpClient.
In the case of ghcnd_read further options passed on to read.csv
Details
Functions:

¢ ghend_version: Get current version of GHCND data
e ghcnd_states: Get US/Canada state names and 2-letter codes

* ghcnd_countries: Get country names and 2-letter codes

Author(s)

Scott Chamberlain <myrmecocystus@gmail.com>, Adam Erickson <adam.erickson@ubc.ca>

ghend_stations 23

Examples

Not run:
ghend_states()
ghcnd_countries()
ghcend_version()

End(Not run)

ghcnd_stations Get information on the GHCND weather stations

Description

This function returns an object with a dataframe with meta-information about all available GHCND
weather stations.

Usage
ghend_stations(refresh = FALSE, ...)
Arguments
refresh (logical) If TRUE force re-download of data. Default: FALSE
In the case of ghcnd () additional curl options to pass through to crul::HttpClient.
In the case of ghcnd_read further options passed on to read. csv
Value

This function returns a tibble (dataframe) with a weather station on each row with the following
columns:

* id: The weather station’s ID number. The first two letters denote the country (using FIPS
country codes).

» latitude: The station’s latitude, in decimal degrees. Southern latitudes will be negative.

* longitude: The station’s longitude, in decimal degrees. Western longitudes will be negative.
e elevation: The station’s elevation, in meters.

* name: The station’s name.

* gsn_flag: "GSN" if the monitor belongs to the GCOS Surface Network (GSN). Otherwise
either blank or missing.

e wmo_id: If the station has a WMO number, this column gives that number. Otherwise either
blank or missing.

* element: A weather variable recorded at some point during that station’s history. See the link
below in "References" for definitions of the abbreviations used for this variable.

» first_year: The first year of data available at that station for that weather element.
* last_year: The last year of data available at that station for that weather element.

If a weather station has data on more than one weather variable, it will be represented in multiple
rows of this output dataframe.

24 homr

Note

Since this function is pulling a large dataset by ftp, it may take a while to run.

References

For more documentation on the returned dataset, see http://www1.ncdc.noaa.gov/pub/data/ghcn/daily/readme.txt

Examples

Not run:
Get stations, ghcnd-stations and ghcnd-inventory merged
(stations <- ghcnd_stations())

library(dplyr)

filter by state

stations %>% filter(state == "IL")
stations %>% filter(state == "OR")

those without state values

stations %>% filter(state == "")

filter by element

stations %>% filter(element == "PRCP")
filter by id prefix

stations %>% filter(grepl("*AF", id))
stations %>% filter(grepl("*AFM", id))
filter by station long name

stations %>% filter(name == "CALLATHARRA")

End(Not run)

homr Historical Observing Metadata Repository (HOMR) station metadata

Description

Historical Observing Metadata Repository (HOMR) station metadata

Usage

homr (

qid = NULL,
gidMod = NULL,
station = NULL,
state = NULL,
county = NULL,
country = NULL,
name = NULL,
nameMod = NULL,
platform = NULL,

homr

date = NULL,

25

begindate = NULL,
enddate = NULL,

headersOnly =

FALSE,

phrData = NULL,
combine = FALSE,

Arguments

gid

gidMod

station

state

county

country

name

nameMod

platform

date

One of COOP, FAA, GHCND, ICAO, NCDCSTNID, NWSLI, TRANS, WBAN,
or WMO, or any of those plus a-z@-9, or just a-z@-9. (qid = qualified ID)

(character) One of: is, starts, ends, contains. Specifies how the ID portion of
the qid parameter should be applied within the search. If a qid is passed but the
gqidMod parameter is not used, qidMod is assumed to be IS.

(character) A station id.

(character) A two-letter state abbreviation. Two-letter code for US states, Cana-
dian provinces, and other Island areas.

(character) A two letter county code. US county names, best used with a state
identifier.

(character) A two letter country code. See here for a list of valid country names.

(character) One of 0-9A-Z+. Searches on any type of name we have for the
station.

(character) is|starts|ends|contains. Specifies how the name parameter
should be applied within the search. If a name is passed but the nameMod
parameter is not used, nameMod is assumed to be IS.

(character) (aka network) ASOS | USCRN | USHCN | NEXRAD | AL USRCRN | USRCRN | COOP.
Limit the search to stations of a certain platform/network type.

(character) YYYY-MM-DD|all Limits values to only those that occurred on a spe-
cific date. Alternatively, date=all will return all values for matched stations. If
this field is omitted, the search will return only the most recent values for each
field.

begindate, enddate

headersOnly

phrData

YYYY-MM-DD. Limits values to only those that occurred within a date range.

(logical) Returns only minimal information for each station found (NCDC Sta-
tion ID, Preferred Name, Station Begin Date, and Station End Date), but is much
quicker than a full query. If you are performing a search that returns a large num-
ber of stations and intend to choose only one from that list to examine in detail,
headersOnly may give you enough information to find the NCDC Station ID for
the station that you actually want.

(logical) The HOMR web service now includes PHR (element-level) data when
available, in an elements section. Because of how this data is structured, it can
substantially increase the size of any result which includes it. If you don’t need
this data you can omit it by including phrData=false. If the parameter is not set,
it will default to phrData=true.

26 homr_definitions

combine (logical) Combine station metadata or not.

Curl options passed on to crul::verb-GET (optional)

Details
Since the definitions for variables are always the same, we don’t include the ability to get description
data in this function. Use homr_definitions() to get descriptions information.

Value

A list, with elements named by the station ids.

References

https://www.ncdc.noaa.gov/homr/api

Examples
Not run:
homr(qid = 'COOP:046742"')
homr(qid = ':046742")

homr (qidMod="starts', qid='COOP:0467"')

homr (headersOnly=TRUE, state='DE')

homr (headersOnly=TRUE, country='GHANA")

homr (headersOnly=TRUE, state='NC', county='BUNCOMBE')
homr (name="'CLAYTON")

res <- homr(state='NC', county='BUNCOMBE', combine=TRUE)
res$id

res$head

res$updates

homr (nameMod="starts', name='CLAY')

homr (headersOnly=TRUE, platform='AS0S')

homr (qid='COOP:046742', date='2011-01-01")

homr (qid="'CO0P:046742', begindate='2005-01-01', enddate='2011-01-01")
homr(state='DE', headersOnly=TRUE)

homr (station=20002078)

homr (station=20002078, date='all', phrData=FALSE)

Optionally pass in curl options
homr (headersOnly=TRUE, state='NC', county='BUNCOMBE', verbose = TRUE)

End(Not run)

homr_definitions Historical Observing Metadata Repository (HOMR) station metadata
- definitions

Description

Historical Observing Metadata Repository (HOMR) station metadata - definitions

isd

Usage

homr_definitions(...)

Arguments

Examples

Not run:

Curl options passed on to crul::verb-GET optional

head(homr_definitions())

End(Not run)

27

isd

Get and parse NOAA ISD/ISH data

Description

Get and parse NOAA ISD/ISH data

Usage

isd(
usaf,
wban,
year,

overwrite

TRUE,

cleanup = TRUE,
additional = TRUE,
parallel = FALSE,

cores =

getOption("cl.cores”, 2),

progress = FALSE,
force = FALSE,

Arguments

usaf, wban
year
overwrite

cleanup

(character) USAF and WBAN code. Required

(numeric) One of the years from 1901 to the current year. Required.

(logical) To overwrite the path to store files in or not, Default: TRUE

(logical) If TRUE, remove compressed . gz file at end of function execution. Pro-
cessing data takes up a lot of time, so we cache a cleaned version of the data.

Cleaning up will save you on disk space. Default: TRUE

28 isd

additional (logical) include additional and remarks data sections in output. Default: TRUE.
Passed on to isdparser: :isd_parse()

parallel (logical) do processing in parallel. Default: FALSE

cores (integer) number of cores to use: Default: 2. We look in your option "cl.cores",

but use default value if not found.

progress (logical) print progress - ignored if parallel=TRUE. The default is FALSE be-
cause printing progress adds a small bit of time, so if processing time is impor-
tant, then keep as FALSE

force (logical) force download? Default: FALSE We use a cached version (an .rds
compressed file) if it exists, but this will override that behavior.

Curl options passed on to crul::verb-GET

Details

isd saves the full set of weather data for the queried site locally in the directory specified by the
path argument. You can access the path for the cached file via attr(x, "source")

We use isdparser internally to parse ISD files. They are relatively complex to parse, so a separate
package takes care of that.

This function first looks for whether the data for your specific query has already been downloaded
previously in the directory given by the path parameter. If not found, the data is requested form
NOAA’s FTP server. The first time a dataset is pulled down we must a) download the data, b)
process the data, and c) save a compressed .rds file to disk. The next time the same data is requested,
we only have to read back in the .rds file, and is quite fast. The benfit of writing to .rds files is that
data is compressed, taking up less space on your disk, and data is read back in quickly, without
changing any data classes in your data, whereas we’d have to jump through hoops to do that with
reading in csv. The processing can take quite a long time since the data is quite messy and takes
a bunch of regex to split apart text strings. We hope to speed this process up in the future. See
examples below for different behavior.

Value

A tibble (data.frame).

Errors

Note that when you get an error similar to Error: download failed for https://ftp.ncdc.noaa.gov/pub/data/noaa/
the file does not exist on NOAA’s servers. If your internet is down, you’ll get a different error.

Note

There are now no transformations (scaling, class changes, etc.) done on the output data. This may
change in the future with parameters to toggle transformations, but none are done for now. See
isdparser::isd_transform() for transformation help. Comprehensive transformations for all
variables are not yet available but should be available in the next version of this package.

See isd_cache for managing cached files

isd 29

References

https://ftp.ncdc.noaa.gov/pub/data/noaa/ https://www1.ncdc.noaa.gov/pub/data/noaa

See Also

Other isd: isd_read(), isd_stations_search(), isd_stations()

Examples

Not run:
Get station table
(stations <- isd_stations())

plot stations
remove incomplete cases, those at 0,0
df <- stations[complete.cases(stations$lat, stations$lon),]
df <- df[dfs$lat != 0,]
make plot
library("leaflet”)
leaflet(data = df) %>%
addTiles() %>%
addCircles()

Get data

(res <- isd(usaf='011490', wban='99999', year=1986))
(res <- isd(usaf='011690', wban='99999', year=1993))
(res <- isd(usaf='109711"', wban=99999, year=1970))

"additional” and "remarks” data sections included by default

can toggle that parameter to not include those in output, saves time

(res1 <- isd(usaf='011490', wban='99999"', year=1986, force = TRUE))

(res2 <- isd(usaf='011490', wban='99999', year=1986, force = TRUE,
additional = FALSE))

The first time a dataset is requested takes longer
system.time(isd(usaf='782680', wban='99999', year=2011))
system.time(isd(usaf='782680', wban='99999', year=2011))

Plot data

get data for multiple stations

resl <- isd(usaf='011690', wban='99999', year=1993)
res2 <- isd(usaf='782680', wban='99999', year=2011)
res3 <- isd(usaf='008415"', wban='99999', year=2016)
res4 <- isd(usaf='109711"', wban=99999, year=1970)
combine data

library(dplyr)

res_all <- bind_rows(resl1, res2, res3, res4)

add date time

library("lubridate™”)

dd <- sprintf('%s %s', as.character(res_all$date), res_all$time)
res_all$date_time <- ymd_hm(dd)

remove 999's

30

isd_read

res_all <- filter(res_all, temperature < 900)

plot
if (interactive()) {
library(ggplot2)
ggplot(res_all, aes(date_time, temperature)) +
geom_line() +
facet_wrap(~usaf_station, scales = 'free_x')
3
print progress
note: if the file is already on your system, you'll see no progress bar

(res <- isd(usaf='011690', wban='99999', year=1993, progress=TRUE))

parallelize processing
(res <- isd(usaf=172007, wban=99999, year=2016, parallel=TRUE))

End(Not run)

isd_read Read NOAA ISD/ISH local file

Description

Read NOAA ISD/ISH local file

Usage

isd_read(
path,
additional = TRUE,
parallel = FALSE,
cores = getOption(”cl.cores”, 2),
progress = FALSE

)
Arguments

path (character) path to the file. required.

additional (logical) include additional and remarks data sections in output. Default: TRUE.
Passed on to isdparser::isd_parse()

parallel (logical) do processing in parallel. Default: FALSE

cores (integer) number of cores to use: Default: 2. We look in your option "cl.cores",
but use default value if not found.

progress (logical) print progress - ignored if parallel=TRUE. The default is FALSE be-

cause printing progress adds a small bit of time, so if processing time is impor-
tant, then keep as FALSE

isd_stations 31

Details

isd_read - read a . gz file as downloaded from NOAA’s website

Value

A tibble (data.frame)

References

https://ftp.ncdc.noaa.gov/pub/data/noaa/

See Also

isd(), isd_stations(), isd_stations_search()

Other isd: isd_stations_search(), isd_stations(), isd()

Examples

Not run:

file <- system.file("examples”, "011490-99999-1986.gz", package = "rnoaa")
isd_read(file)
isd_read(file, additional = FALSE)

End(Not run)

isd_stations Get NOAA ISD/ISH station data from NOAA FTP server.

Description

Get NOAA ISD/ISH station data from NOAA FTP server.

Usage

isd_stations(refresh = FALSE)

Arguments

refresh (logical) Download station data from NOAA ftp server again. Default: FALSE

Details

The data table is cached, but you can force download of data from NOAA by setting refresh=TRUE

32

Value

a tibble (data.frame) with the columns:

e usaf - USAF number, character

¢ wban - WBAN number, character

e station_name - station name, character

¢ ctry - Country, if given, character

* state - State, if given, character

* icao - ICAO number, if given, character

* lat - Latitude, if given, numeric

* lon - Longitude, if given, numeric

* elev_m - Elevation, if given, numeric

* begin - Begin date of data coverage, of form YYYYMMDD, numeric
* end - End date of data coverage, of form YYYYMMDD, numeric

Note

See isd_cache for managing cached files

References

https://ftp.ncdc.noaa.gov/pub/data/noaa/

See Also

Other isd: isd_read(), isd_stations_search(), isd()

Examples

Not run:
Get station table
(stations <- isd_stations())

plot stations
remove incomplete cases, those at 0,0
df <- stations[complete.cases(stations$lat, stations$lon),]
df <- df[df$lat != 0,]
make plot
library("leaflet"”)
leaflet(data = df) %>%
addTiles() %>%
addCircles()

End(Not run)

isd_stations

isd_stations_search 33

isd_stations_search Search for NOAA ISD/ISH station data from NOAA FTP server.

Description

Search for NOAA ISD/ISH station data from NOAA FTP server.

Usage

isd_stations_search(lat = NULL, lon = NULL, radius = NULL, bbox = NULL)

Arguments
lat (numeric) Latitude, in decimal degree
lon (numeric) Latitude, in decimal degree
radius (numeric) Radius (in km) to search from the lat,lon coordinates
bbox (numeric) Bounding box, of the form: min-longitude, min-latitude, max-longitude,
max-latitude
Details

We internally call isd_stations() to get the data.frame of ISD stations, which is quite fast as long
as it’s not the first time called since we cache the table. Before searching, we clean up the data.frame,
removing stations with no lat/long coordinates, those with impossible lat/long coordinates, and
those at 0,0.

When lat/lon/radius input we use meteo_distance() to search for stations, while when bbox is
input, we simply use dplyr::filter()

Value
a data.frame with the columns:

e usaf - USAF number, character

e wban - WBAN number, character

e station_name - station name, character

* ctry - Country, if given, character

* state - State, if given, character

* icao - ICAO number, if given, character

* lat - Latitude, if given, numeric

* lon - Longitude, if given, numeric

* elev_m - Elevation, if given, numeric

* begin - Begin date of data coverage, of form YYYYMMDD, numeric
* end - End date of data coverage, of form YYYYMMDD, numeric

* distance - distance (km) (only present if using lat/lon/radius parameter combination)

34 Icd

References

https://ftp.ncdc.noaa.gov/pub/data/noaa/

See Also

Other isd: isd_read(), isd_stations(), isd()

Examples

Not run:
lat, long, radius
isd_stations_search(lat = 38.4, lon = -123, radius = 250)

X <- isd_stations_search(lat = 60, lon = 18, radius = 200)

if (requireNamespace("leaflet”)) {
library("leaflet")
leaflet() %>%
addTiles() %>%
addCircles(lng = x$lon,

lat = x$lat,
popup = x$station_name) %>%
clearBounds()

3
bounding box
bbox <- c(-125.0, 38.4, -121.8, 40.9)

isd_stations_search(bbox = bbox)

End(Not run)

lcd Local Climatological Data from NOAA

Description

Local Climatological Data from NOAA

Usage
lcd(station, year, col_types = NULL, ...)
Arguments
station (character) station code, e.g., "02413099999". we will allow integer/numeric

passed here, but station ids can have leading zeros, so it’s a good idea to keep
stations as character class. required

year (integer) year, e.g., 2017. required

Icd 35

col_types (named character vector) defaults to NULL. Use this argument to change the
returned column type. For example,"character” instead of "numeric". See or use
lcd_columns to create a named vector with allowed column names. If the user
specified type is not compatible, the function will choose a type automatically
and raise a message. optional

curl options passed on to crul::verb-GET

Value
a data.frame with many columns. the first 10 are metadata:

* station

* date

¢ latitude

* longitude

* elevation

* name

* report_type

* source
And the rest should be all data columns. The first part of many column names is the time period,
being one of:

* hourly

* daily

* monthly

¢ shortduration

So the variable you are looking for may not be the first part of the column name

Note

See lcd_cache for managing cached files

References

Docs: https://www.ncei.noaa.gov/data/local-climatological-data/doc/LCD_documentation.pdf Data
comes from: https://www.ncei.noaa.gov/data/local-climatological-data/access

Examples

Not run:

x = lcd(station = "01338099999", year = 2017)
lcd(station = "01338099999", year = 2015)
lcd(station = "02413099999", year = 2009)
lcd(station = "02413099999", year = 2001)

pass curl options

36 meteo_coverage

lcd(station = "02413099999", year = 2002, verbose = TRUE)

End(Not run)

meteo_clear_cache Clear meteo cached files

Description

The meteo functions use an aplication

Usage

meteo_clear_cache(force = FALSE)

Arguments

force (logical) force delete. default: FALSE

Note

This function will clear all cached meteo files.

See Also

Other meteo: meteo_show_cache()

meteo_coverage Determine the "coverage" for a station data frame

Description

Call this function after pulling down observations for a set of stations to retrieve the "coverage" (i.e.
how complete each field is). If either or both obs_start_date or obs_end_date are specified, the
coverage test will be limited to that date range.

Usage

meteo_coverage(
meteo_df,
obs_start_date = NULL,
obs_end_date = NULL,
verbose = FALSE

meteo_distance 37

Arguments

meteo_df a meteo data.frame

obs_start_date specify either or both (obs_start_date, obs_end_date) to constrain coverate tests.
These should be Date objects.

obs_end_date specify either or both (obs_start_date, obs_end_date) to constrain coverate tests.
These should be Date objects.

verbose if TRUE will display the coverage summary along with returning the coverage
data.frame

Value

a list containing 2 data.frames named ’summary’ and ’detail’. The ’summary’ data.frame
contains columns:

$ id (chr)
$ start_date (time)
$ end_date (time)
$ total_obs (int)

with additional fields (and their coverage percent) depending on which weather variables were
queried and available for the weather station. The data.frame named ’detail’ contains the same
columns as the meteo_df input data, but expands the rows to contain NAs for days without data.

Examples

Not run:

monitors <- c("ASNQQQ95063", "ASN0O0024025", "ASNO0040112", "ASNQQ041023",
"ASN0OQ009998", "ASN0O0066078", "ASNOV0O03069", "ASN0O0090162",
"ASNOQ040126", "ASN0O0058161")

obs <- meteo_pull_monitors(monitors)

obs_covr <- meteo_coverage(obs)

End(Not run)

meteo_distance Find all monitors within a radius of a location

Description

This function will identify all weather stations with a specified radius of a location. If no radius
is given, the function will return a dataframe of all available monitors, sorted by distance to the
location. The 1imit argument can be used to limit the output dataframe to the x closest monitors to
the location.

38

Usage

meteo_distance(
station_data,

meteo_distance

’

lat,
long,
units = "deg”,
radius = NULL
limit = NULL
)
Arguments

station_data

lat
long

units

radius

limit

Value

The output of ghcnd_stations(), which is a current list of weather stations
available through NOAA for the GHCND dataset. The format of this is a
dataframe with one row per weather station. Latitude and longitude for the
station locations should be in columns with the names "latitude" and "longi-
tude", consistent with the output from ghcnd_stations(). To save time, run
the ghcnd_stations call and save the output to an object, rather than rerunning
the default every time (see the examples in meteo_nearby_stations()).

Latitude of the location. Southern latitudes should be given as negative values.

Longitude of the location. Western longitudes should be given as negative val-
ues.

Units of the latitude and longitude values. Possible values are:
* deg: Degrees (default);
* rad: Radians.

A numeric vector giving the radius (in kilometers) within which to search for
monitors near a location.

An integer giving the maximum number of monitors to include for each location.
The x closest monitors will be kept. Default is NULL (pull everything available,
within the radius if the radius is specified).

A dataframe of weather stations near the location. This is the single-location version of the return
value for meteo_nearby_stations()

Author(s)

Alex Simmons <a2.simmons@qut.edu.au>, Brooke Anderson <brooke.anderson@colostate.edu>

Examples

Not run:

station_data <- ghcnd_stations()
meteo_distance(station_data, -33, 151, radius = 10, limit = 10)

meteo_distance(station_data, -33, 151, radius = 10, limit

3)

meteo_nearby_stations

39

FIXME - units param is ignored

#meteo_distance(station_data, -33, 151, units =

End(Not run)

= 'rad', radius = 10, limit =

3)

meteo_nearby_stations Find weather monitors near locations

Description

This function inputs a dataframe with latitudes and longitudes of locations and creates a dataframe
with monitors within a certain radius of those locations. The function can also be used, with the
limit argument, to pull a certain number of the closest weather monitors to each location. The
weather monitor IDs in the output dataframe can be used with other rnoaa functions to pull data
from all available weather stations near a location (e.g., meteo_pull_monitors()).

Usage

meteo_nearby_stations(

lat_lon_df,

lat_colname =
lon_colname =

station_data

"latitude”,
"longitude”,

= ghend_stations(),

var = "all",
year_min = NULL,
year_max = NULL,
radius = NULL,
limit = NULL

)

Arguments
lat_lon_df A dataframe that contains the latitude, longitude, and a unique identifier for

lat_colname

lon_colname

station_data

each location (id). For an example of the proper format for this dataframe, see
the examples below. Latitude and longitude must both be in units of decimal
degrees. Southern latitudes and Western longitudes should be given as negative
values. A tibble is accepted, but is coerced to a data.frame internally before any
usage.

A character string giving the name of the latitude column in the lat_lon_df
dataframe.

A character string giving the name of the longitude column in the lat_lon_df
dataframe.

The output of ghcnd_stations(), which is a current list of weather stations
available through NOAA for the GHCND dataset. The format of this is a
dataframe with one row per weather station. Latitude and longitude for the
station locations should be in columns with the names "latitude" and "longi-
tude", consistent with the output from ghcnd_stations(). To save time, run

40

var

year_min

year_max

radius

limit

Details

meteo_nearby_statjons

the ghcnd_stations call and save the output to an object, rather than rerunning
the default every time (see the examples in meteo_nearby_stations()).

A character vector specifying either "all” (pull all available weather parameters
for the site) or the weather parameters to keep in the final data (e.g., c("TMAX",
"TMIN") to only keep maximum and minimum temperature). Example choices
for this argument include:

* PRCP: Precipitation, in tenths of millimeters

* TAVG: Average temperature, in tenths of degrees Celsius

e TMAX: Maximum temperature, in tenths of degrees Celsius

e TMIN: Minimum temperature, in tenths of degrees Celsius
A full list of possible weather variables is available in NOAA’s README file for
the GHCND data (https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/readme.txt).
Most weather stations will only have a small subset of all the possible weather

variables, so the data generated by this function may not include all of the vari-
ables the user specifies through this argument.

A numeric value giving the earliest year from which you ultimately want weather
data (e.g., 2013, if you only are interested in data from 2013 and later).

A numeric value giving the latest year from which you ultimately want weather
data.

A numeric vector giving the radius (in kilometers) within which to search for
monitors near a location.

An integer giving the maximum number of monitors to include for each location.
The x closest monitors will be kept. Default is NULL (pull everything available,
within the radius if the radius is specified).

Great circle distance is used to determine whether a weather monitor is within the required radius.

Value

A list containing dataframes with the sets of unique weather stations within the search radius for
each location. Site IDs for the weather stations given in this dataframe can be used in conjunction
with other functions in the rnoaa package to pull weather data for the station. The dataframe for
each location includes:

e id: The weather station ID, which can be used in other functions to pull weather data from

the station;

¢ name: The weather station name;

* latitude: The station’s latitude, in decimal degrees. Southern latitudes will be negative;

* longitude: The station’s longitude, in decimal degrees. Western longitudes will be negative;

e distance: The station’s distance, in kilometers, from the location.

meteo_process_geographic_data 41

Note

By default, this function will pull the full station list from NOAA to use to identify nearby locations.
If you will be creating lists of monitors nearby several stations, you can save some time by using
the ghcnd_stations() function separately to create an object with all stations and then use the
argument station_data in this function to reference that object, rather than using this function’s
defaults (see examples).

Author(s)

Alex Simmons <a2.simmons@qut.edu. au>, Brooke Anderson <brooke.anderson@colostate.edu>

See Also

The weather monitor IDs generated by this function can be used in other functions in the rnoaa
package, like meteo_pull_monitors() and meteo_tidy_ghcnd(), to pull weather data from weather
monitors near a location.

Examples

Not run:
station_data <- ghcnd_stations() # Takes a while to run

lat_lon_df <- data.frame(id = c("sydney”, "brisbane"),
latitude = c(-33.8675, -27.4710),
longitude = c(151.2070, 153.0234))
nearby_stations <- meteo_nearby_stations(lat_lon_df = lat_lon_df,
station_data = station_data, radius = 10)

miami <- data.frame(id = "miami"”, latitude = 25.7617, longitude = -80.1918)

Get all stations within 50 kilometers
meteo_nearby_stations(lat_lon_df = miami, station_data = station_data,
radius = 50, var = c("PRCP", "TMAX"),
year_min = 1992, year_max = 1992)
Get the closest 10 monitors
meteo_nearby_stations(lat_lon_df = miami, station_data = station_data,
limit = 10, var = c("PRCP"”, "TMAX"),
year_min = 1992, year_max = 1992)

End(Not run)

meteo_process_geographic_data
Calculate the distances between a location and all available stations

42 meteo_process_geographic_data

Description

This function takes a single location and a dataset of available weather stations and calculates the
distance between the location and each of the stations, using the great circle method. A new column
is added to the dataset of available weather stations giving the distance between each station and
the input location. The station dataset is then sorted from closest to furthest distance to the location
and returned as the function output.

Usage

meteo_process_geographic_data(station_data, lat, long, units = "deg")

Arguments

station_data The output of ghcnd_stations(), which is a current list of weather stations
available through NOAA for the GHCND dataset. The format of this is a
dataframe with one row per weather station. Latitude and longitude for the
station locations should be in columns with the names "latitude" and "longi-
tude", consistent with the output from ghcnd_stations(). To save time, run
the ghcnd_stations call and save the output to an object, rather than rerunning
the default every time (see the examples in meteo_nearby_stations()).

lat Latitude of the location. Southern latitudes should be given as negative values.

long Longitude of the location. Western longitudes should be given as negative val-
ues.

units Units of the latitude and longitude values. Possible values are:

* deg: Degrees (default);
¢ rad: Radians.

Value

The station_data dataframe that is input, but with a distance column added that gives the dis-
tance to the location (in kilometers), and re-ordered by distance between each station and the loca-
tion (closest weather stations first).

Author(s)

Alex Simmons <a2.simmons@qut.edu. au>, Brooke Anderson <brooke.anderson@colostate.edu>

Examples

Not run:
station_data <- ghcnd_stations()
meteo_process_geographic_data(station_data, lat=-33, long=151)

End(Not run)

meteo_pull_monitors 43

meteo_pull_monitors Pull GHCND weather data for multiple weather monitors

Description

This function takes a vector of one or more weather station IDs. It will pull the weather data from
the Global Historical Climatology Network’s daily data (GHCND) for each of the stations and join
them together in a single tidy dataframe. For any weather stations that the user calls that are not
available by ftp from GHCND, the function will return a warning giving the station ID.

Usage

meteo_pull_monitors(
monitors,
keep_flags = FALSE,
date_min = NULL,
date_max = NULL,
var = "all”

Arguments

monitors A character vector listing the station IDs for all weather stations the user would
like to pull. To get a full and current list of stations, the user can use the
ghend_stations() function. To identify stations within a certain radius of a
location, the user can use the meteo_nearby_stations() function.

keep_flags TRUE / FALSE for whether the user would like to keep all the flags for each
weather variable. The default is to not keep the flags (FALSE). See the note
below for more information on these flags.

date_min A character string giving the earliest date of the daily weather time series that
the user would like in the final output. This character string should be formatted
as "yyyy-mm-dd". If not specified, the default is to keep all daily data for the
queried weather site from the earliest available date.

date_max A character string giving the latest date of the daily weather time series that the
user would like in the final output. This character string should be formatted
as "yyyy-mm-dd". If not specified, the default is to keep all daily data for the
queried weather site through the most current available date.

var A character vector specifying either "all” (pull all available weather parameters

for the site) or the weather parameters to keep in the final data (e.g., c("TMAX",
"TMIN") to only keep maximum and minimum temperature). Example choices
for this argument include:

* PRCP: Precipitation, in tenths of millimeters

* TAVG: Average temperature, in tenths of degrees Celsius

e TMAX: Maximum temperature, in tenths of degrees Celsius

e TMIN: Minimum temperature, in tenths of degrees Celsius

44 meteo_pull_monitors

A full list of possible weather variables is available in NOAA’s README file for
the GHCND data (https://www 1.ncdc.noaa.gov/pub/data/ghcn/daily/readme.txt).
Most weather stations will only have a small subset of all the possible weather
variables, so the data generated by this function may not include all of the vari-
ables the user specifies through this argument.

Value

A data frame of daily weather data for multiple weather monitors, converted to a tidy format. All
weather variables may not exist for all weather stations. Examples of variables returned are:

 id: Character string with the weather station site id

* date: Date of the observation

* prcp: Precipitation, in tenths of mm

* tavg: Average temperature, in tenths of degrees Celsius

e tmax: Maximum temperature, in tenths of degrees Celsius
* tmin: Minimum temperature, in tenths of degrees Celsius
* awnd: Average daily wind speed, in meters / second

* wsfg: Peak gust wind speed, in meters / second

There are other possible weather variables in the Global Historical Climatology Network; see
http://www1.ncdc.noaa.gov/pub/data/ghcn/daily/readme.txt for a full list. If the var argument is
something other than "all", then only variables included in that argument will be included in the
output data frame. All variables are in the units specified in the linked file (note that, in many cases,
measurements are given in tenths of the units more often used, e.g., tenths of degrees for temper-
ature). All column names correspond to variable names in the linked file, but with all uppercase
letters changed to lowercase.

Note
The weather flags, which are kept by specifying keep_flags = TRUE are:

» x_mflag: Measurement flag, which gives some information on how the observation was mea-
sured.

* x_qgflag: Quality flag, which gives quality information on the measurement, like if it failed
to pass certain quality checks.

* x_sflag: Source flag. This gives some information on the weather collection system (e.g.,
U.S. Cooperative Summary of the Day, Australian Bureau of Meteorology) the weather ob-
servation comes from.

More information on the interpretation of these flags can be found in the README file for the
NCDC’s Daily Global Historical Climatology Network’s data at http://www1.ncdc.noaa.gov/pub/data/ghcn/daily/readme.txt

non non

This function converts any value of -9999 to a missing value for the variables "prcp"”, "tmax", "tmin",
"tavg", "snow", and "snwd". However, for some weather observations, there still may be missing
values coded using a series of "9"s of some length. You will want to check your final data to see if

there are lurking missing values given with series of "9"s.

This function may take a while to run.

meteo_show_cache 45

Author(s)

Brooke Anderson <brooke.anderson@colostate.edu>

References

For more information about the data pulled with this function, see:

Menne, M.J., I. Durre, R.S. Vose, B.E. Gleason, and T.G. Houston, 2012: An overview of the Global
Historical Climatology Network-Daily Database. Journal of Atmospheric and Oceanic Technology,
29, 897-910, doi:10.1175/JTECH-D-11-00103.1.

Examples
Not run:
monitors <- c("ASNQ0Q@3003", "ASMO0Q94299", "ASMR0Q94995", "ASM00094998")

all_monitors_clean <- meteo_pull_monitors(monitors)

End(Not run)

meteo_show_cache Show the meteo cache directory

Description

Displays the full path to the meteo cache directory

Usage

meteo_show_cache()

See Also

Other meteo: meteo_clear_cache()

46 meteo_spherical_distance

meteo_spherical_distance
Calculate the distance between two locations

Description

This function uses the haversine formula to calculate the great circle distance between two locations,
identified by their latitudes and longitudes.

Usage

meteo_spherical_distance(lat1, longl, lat2, long2, units = "deg")

Arguments
lat1 Latitude of the first location.
long1 Longitude of the first location.
lat2 Latitude of the second location.
long?2 Longitude of the second location.
units Units of the latitude and longitude values. Possible values are:
* deg: Degrees (default);
* rad: Radians.
Value

A numeric value giving the distance (in kilometers) between the pair of locations.

Note

This function assumes an earth radius of 6,371 km.

Author(s)

Alex Simmons <a2.simmons@qut.edu.au>, Brooke Anderson <brooke.anderson@colostate.edu>

Examples

-27.4667, longl
-27.4710, long2

meteo_spherical_distance(lat1
lat2

153.0217,
153.0234)

meteo_tidy_ghcnd 47

meteo_tidy_ghcnd Create a tidy GHCND dataset from a single monitor

Description

This function inputs an object created by ghcnd and cleans up the data into a tidy form.

Usage
meteo_tidy_ghcnd(
stationid,
keep_flags = FALSE,
var = "all",

date_min = NULL,
date_max = NULL

Arguments

stationid (character) A character vector giving the identification of the weather stations for
which the user would like to pull data. To get a full and current list of stations,
the user can use the ghcnd_stations() function. To identify stations within
a certain radius of a location, the user can use the meteo_nearby_stations()
function.

keep_flags TRUE / FALSE for whether the user would like to keep all the flags for each
weather variable. The default is to not keep the flags (FALSE). See the note
below for more information on these flags.

var A character vector specifying either "all” (pull all available weather parameters
for the site) or the weather parameters to keep in the final data (e.g., c("TMAX",
"TMIN") to only keep maximum and minimum temperature). Example choices
for this argument include:

* PRCP: Precipitation, in tenths of millimeters

* TAVG: Average temperature, in tenths of degrees Celsius

e TMAX: Maximum temperature, in tenths of degrees Celsius

e TMIN: Minimum temperature, in tenths of degrees Celsius
A full list of possible weather variables is available in NOAA’s README file for
the GHCND data (https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/readme.txt).
Most weather stations will only have a small subset of all the possible weather

variables, so the data generated by this function may not include all of the vari-
ables the user specifies through this argument.

date_min A character string giving the earliest date of the daily weather time series that
the user would like in the final output. This character string should be formatted
as "yyyy-mm-dd". If not specified, the default is to keep all daily data for the
queried weather site from the earliest available date.

48 meteo_tidy_ghcnd

date_max A character string giving the latest date of the daily weather time series that the
user would like in the final output. This character string should be formatted
as "yyyy-mm-dd". If not specified, the default is to keep all daily data for the
queried weather site through the most current available date.

Value

A data frame of daily weather data for a single weather monitor, converted to a tidy format. All
weather variables may not exist for all weather stations. Examples of variables returned are:

* id: Character string with the weather station site id

* date: Date of the observation

* prcp: Precipitation, in tenths of mm

* tavg: Average temperature, in degrees Celsius

* tmax: Maximum temperature, in degrees Celsius

e tmin: Minimum temperature, in degrees Celsius

* awnd: Average daily wind speed, in meters / second

* wsfg: Peak gust wind speed, in meters / second
There are other possible weather variables in the Global Historical Climatology Network; see
http://www1.ncdc.noaa.gov/pub/data/ghcn/daily/readme.txt for a full list. The variables prcp, tmax,
tmin, and tavg have all been converted from tenths of their metric to the metric (e.g., from tenths

of degrees Celsius to degrees Celsius). All other variables are in the units specified in the linked
file.

Note
The weather flags, which are kept by specifying keep_flags = TRUE are:

» *_mflag: Measurement flag, which gives some information on how the observation was mea-
sured.

» *_gflag: Quality flag, which gives quality information on the measurement, like if it failed
to pass certain quality checks.

* *_sflag: Source flag. This gives some information on the weather collection system (e.g.,
U.S. Cooperative Summary of the Day, Australian Bureau of Meteorology) the weather ob-
servation comes from.

More information on the interpretation of these flags can be found in the README file for the
NCDC’s Daily Global Historical Climatology Network’s data at http://www1.ncdc.noaa.gov/pub/data/ghcn/daily/readme.txt

Author(s)

Brooke Anderson <brooke.anderson@colostate.edu>

See Also

meteo_pull_monitors()

meteo_tidy_ghcnd_element 49

Examples

Not run:

One station in Australia is ASM@@Q94275
meteo_tidy_ghcnd(stationid = "ASNQ00Q3003")
meteo_tidy_ghcnd(stationid = "ASN@Q0QQ3003", var = "tavg")
meteo_tidy_ghcnd(stationid = "ASN@0QQ3003", date_min = "1989-01-01")

End(Not run)

meteo_tidy_ghcnd_element
Restructure element of ghcnd_search list

Description

This function restructures the output of ghcnd_search() to add a column giving the variable name
(key) and change the name of the variable column to value. These changes facilitate combining
all elements from the list created by ghcnd_search(), to create a tidy dataframe of the weather
observations from the station.

Usage

meteo_tidy_ghcnd_element(x, keep_flags = FALSE)

Arguments
X A dataframe with daily observations for a single monitor for a single weather
variable. This dataframe is one of the elements returned by ghcnd_search()
keep_flags TRUE / FALSE for whether the user would like to keep all the flags for each
weather variable. The default is to not keep the flags (FALSE). See the note
below for more information on these flags.
Value

A dataframe reformatted to allow easy aggregation of all weather variables for a single monitor.

Author(s)

Brooke Anderson <brooke.anderson@colostate.edu>

50 ncdc

ncdc Search for and get NOAA NCDC data

Description

Search for and get NOAA NCDC data

Usage

ncdc(

datasetid = NULL,
datatypeid = NULL,
stationid = NULL,
locationid = NULL,
startdate = NULL,
enddate = NULL,

sortfield = NULL,
sortorder = NULL,

limit = 25,
offset = NULL,
token = NULL,

includemetadata = TRUE,
add_units = FALSE,

Arguments

datasetid (required) Accepts a single valid dataset id. Data returned will be from the
dataset specified, see ncdc_datasets

datatypeid Accepts a valid data type id or a vector or list of data type ids. (optional)

stationid Accepts a valid station id or a vector or list of station ids

locationid Accepts a valid location id or a vector or list of location ids (optional)

startdate (character/date) Accepts valid ISO formated date (yyyy-mm-dd) or date time
(YYYY-MM-DDThh:mm:ss). Data returned will have data after the specified
date. The date range must be less than 1 year. required.

enddate (character/date) Accepts valid ISO formated date (yyyy-mm-dd) or date time
(YYYY-MM-DDThh:mm:ss). Data returned will have data before the specified
date. The date range must be less than 1 year. required.

sortfield The field to sort results by. Supports id, name, mindate, maxdate, and datacov-
erage fields (optional)

sortorder Which order to sort by, asc or desc. Defaults to asc (optional)

limit Defaults to 25, limits the number of results in the response. Maximum is 1000

(optional)

ncdc 51

offset Defaults to 0, used to offset the resultlist (optional)

token This must be a valid token token supplied to you by NCDC’s Climate Data
Online access token generator. (required) See Authentication section below for

more details.
includemetadata

Used to improve response time by preventing the calculation of result metadata.
Default: TRUE. This does not affect the return object, in that the named part of
the output list called "meta" is still returned, but is NULL. In practice, [haven’t
seen response time’s improve, but perhaps they will for you.

add_units (logical) whether to add units information or not. default: FALSE. If TRUE, after
getting data from NOAA we add a new column units. See "Adding units" in
Details for more

Curl options passed on to HttpClient (optional)

Details

Note that NOAA NCDC API calls can take a long time depending on the call. The NOAA API
doesn’t perform well with very long timespans, and will time out and make you angry - beware.

Keep in mind that three parameters, datasetid, startdate, and enddate are required.

Note that the default limit (no. records returned) is 25. Look at the metadata in $meta to see
how many records were found. If more were found than 25, you could set the parameter 1imit to
something higher than 25.

Value

An S3 list of length two, a slot of metadata (meta), and a slot for data (data). The meta slot is a list
of metadata elements, and the data slot is a data.frame, possibly of length zero if no data is found.
Note that values in the data slot don’t indicate their units by default, so you will want to either use
the add_units parameter (experimental, see Adding units) or consult the documentation for each
dataset to ensure you’re using the correct units.

Authentication

Get an API key (aka, token) at https://www.ncdc.noaa.gov/cdo-web/token You can pass your token
in as an argument or store it one of two places:

* your .Rprofile file with the entry options(noaakey = "your-noaa-token")
* your .Renviron file with the entry NOAA_KEY=your-noaa-token

See Startup for information on how to create/find your .Rrofile and .Renviron files

Flags

The attributes, or "flags", for each row of the output for data may have a flag with it. Each
datasetid has it’s own set of flags. The following are flag columns, and what they stand for. f1_1is
the beginning of each flag column name, then one or more characters to describe the flag, keeping it
short to maintain a compact data frame. Some of these fields are the same across datasetids. See the
vignette vignette("rnoaa_attributes”, "rnoaa”) for description of possible values for each
flag.

52 ncdc

 fl_c completeness

* fl_d day

* fl_m measurement

» fl_q quality

* fl_s source

e fl_ttime

* fl_cmiss consecutive missing
* fl_miss missing

e fl_u units

GSOM/GSOY Flags

Note that flags are different for GSOM and GSOY datasets. They have their own set of flags

per data class. See system.file("extdata/gsom.json”, package = "rnoaa") for GSOM and
system.file("extdata/gsom.json", package = "rnoaa") for GSOY. Those are JSON files. The

system.file() call gives you then path, then read in with jsonlite: : fromJSON() which will give

a data.frame of the metadata. For more detailed info but plain text, open system.file("extdata/gsom_readme. txt",
package = "rnoaa") and system.file("extdata/gsoy_readme.txt"”, package = "rnoaa") in

a text editor.

Adding units

The add_units parameter is experimental - USE WITH CAUTION! If add_units=TRUE we pull
data from curated lists of data used by matching by datasetid and data type.

We’ve attempted to gather as much information as possible on the many, many data types across
the many different NOAA data sets. However, we may have got some things wrong, so make sure
to double check data you get if you do add units.

Get in touch if you find some units that are wrong or missing, and if you are able to help correct
information.

See Also

Other ncdc: ncdc_combine (), ncdc_datacats(), ncdc_datasets(), ncdc_datatypes(), ncdc_locs_cats(),
ncdc_locs(), ncdc_plot(), ncdc_stations()

Examples

Not run:
GHCN-Daily (or GHCND) data, for a specific station
ncdc(datasetid="GHCND', stationid='GHCND:USW@0@14895",
startdate = '2013-10-01', enddate = '2013-12-01")
also accepts dates as class Date
ncdc(datasetid="GHCND', stationid='GHCND:USW@00@14895",
startdate = as.Date('2013-10-01'), enddate = as.Date('2013-12-01"'))

GHCND data, for a location by FIPS code
ncdc(datasetid="'GHCND', locationid = 'FIPS:02', startdate = '2010-05-01"',

ncdc

enddate = '2010-05-10')

GHCND data from October 1 2013 to December 1 2013
ncdc(datasetid='GHCND', startdate = '2013-10-01', enddate = '2013-10-05"')

GHCN-Monthly (or GSOM) data from October 1 2013 to December 1 2013

ncdc(datasetid='GSOM', startdate = '2013-10-01', enddate = '2013-12-01")

ncdc(datasetid='GSOM', startdate = '2013-10-01', enddate = '2013-12-01",
stationid = "GHCND:AEQ00041196")

Normals Daily (or NORMAL_DLY) GHCND:USW@0@14895 dly-tmax-normal data
ncdc(datasetid="NORMAL_DLY', stationid='GHCND:USW@0014895",
startdate = '2010-05-01', enddate = '2010-05-10"')

Dataset, and location in Australia
ncdc(datasetid='GHCND', locationid='FIPS:AS', startdate = '2010-05-01',
enddate = '2010-05-31")

Dataset, location and datatype for PRECIP_HLY data
ncdc(datasetid="PRECIP_HLY', locationid='ZIP:28801', datatypeid='HPCP',
startdate = '2010-05-01', enddate = '2010-05-10")

multiple datatypeid's
ncdc(datasetid="PRECIP_HLY', datatypeid = 'HPCP',
startdate = '2010-05-01', enddate = '2010-05-10"')

multiple locationid's
ncdc(datasetid="PRECIP_HLY', locationid=c("FIPS:30103", "FIPS:30091"),
startdate = '2010-05-01', enddate = '2010-05-10"')

Dataset, location, station and datatype

ncdc(datasetid="PRECIP_HLY', locationid='ZIP:28801',
stationid="'COOP:310301', datatypeid='HPCP',
startdate = '2010-05-01', enddate = '2010-05-10"')

Dataset, location, and datatype for GHCND
ncdc(datasetid='GHCND', locationid='FIPS:BR', datatypeid='PRCP',
startdate = '2010-05-01', enddate = '2010-05-10"')

Normals Daily GHCND dly-tmax-normal data
ncdc(datasetid="NORMAL_DLY', datatypeid='dly-tmax-normal',
startdate = '2010-05-01', enddate = '2010-05-10")

Normals Daily GHCND:USW@0014895 dly-tmax-normal
ncdc(datasetid="NORMAL_DLY', stationid='GHCND:USWQ00@14895",
datatypeid="'dly-tmax-normal',
startdate = '2010-05-01', enddate = '2010-05-10"')

Hourly Precipitation data for ZIP code 28801
ncdc(datasetid="PRECIP_HLY', locationid='ZIP:28801', datatypeid='HPCP',
startdate = '2010-05-01', enddate = '2010-05-10")

15 min Precipitation data for ZIP code 28801

54 ncdc_combine
ncdc(datasetid="PRECIP_15', datatypeid='QPCP',
startdate = '2010-05-01', enddate = '2010-05-02')
Search the NORMAL_HLY dataset
ncdc(datasetid="NORMAL_HLY', stationid = 'GHCND:USW@0003812',
startdate = '2010-05-01', enddate = '2010-05-10")
Search the GSOY dataset
ncdc(datasetid="ANNUAL', locationid='ZIP:28801', startdate = '2010-05-01"',
enddate = '2010-05-10')
Search the NORMAL_ANN dataset
ncdc(datasetid="NORMAL_ANN', datatypeid='ANN-DUTR-NORMAL',
startdate = '2010-01-01', enddate = '2010-01-01")
Include metadata or not
ncdc(datasetid="GHCND', stationid='GHCND:USW@Q014895"',
startdate = '2013-10-01', enddate = '2013-12-01")
ncdc(datasetid="GHCND', stationid='GHCND:USW@00@14895",
startdate = '2013-10-01', enddate = '2013-12-01', includemetadata=FALSE)
Many stationid's
stat <- ncdc_stations(startdate = "2000-01-01", enddate = "2016-01-01")
find out what datasets might be available for these stations
ncdc_datasets(stationid = stat$data$id[10])
get some data
ncdc(datasetid = "GSOY", stationid = stat$datas$id[1:10],
startdate = "2010-01-01", enddate = "2011-01-01")
End(Not run)
Not run:
NEXRAD2 data
doesn't work yet
ncdc(datasetid="NEXRAD2', startdate = '2013-10-01', enddate = '2013-12-01")
End(Not run)
ncdc_combine Coerce multiple outputs to a single data.frame object.
Description
Coerce multiple outputs to a single data.frame object.
Usage

ncdc_combine(...)

ncdc_combine 55

Arguments

Objects from another ncdc_* function.

Value

A data.frame

See Also

Other ncdc: ncdc_datacats(), ncdc_datasets(), ncdc_datatypes(), ncdc_locs_cats(), ncdc_locs(),
ncdc_plot(), ncdc_stations(), ncdc()

Examples

Not run:

data

outl <- ncdc(datasetid='GHCND', locationid = 'FIPS:02', startdate = '2010-05-01',
enddate = '2010-05-31', limit=10)

out2 <- ncdc(datasetid="'GHCND', locationid = 'FIPS:02', startdate
enddate = '2010-07-31', limit=10)

ncdc_combine(outl, out2)

'2010-07-01",

data sets

outl <- ncdc_datasets(datatypeid='TOBS")
out2 <- ncdc_datasets(datatypeid="'PRCP')
ncdc_combine(outl, out2)

data types

out1l <- ncdc_datatypes(datatypeid="ACMH")
out2 <- ncdc_datatypes(datatypeid="'PRCP')
ncdc_combine(outl, out2)

data categories

out1l <- ncdc_datacats(datacategoryid="ANNAGR")
out2 <- ncdc_datacats(datacategoryid="'PRCP"')
ncdc_combine(outl, out2)

data locations

outl <- ncdc_locs(locationcategoryid="ST', limit=52)

out2 <- ncdc_locs(locationcategoryid="'CITY', sortfield="'name', sortorder='desc')
ncdc_combine(out1, out2)

data locations

outl <- ncdc_locs_cats(startdate='1970-01-01")

out2 <- ncdc_locs_cats(locationcategoryid="'CLIM_REG")
ncdc_combine(outl, out2)

stations

outl <- ncdc_stations(datasetid="GHCND', locationid='FIPS:12017',
stationid="'GHCND:USC00084289")

out2 <- ncdc_stations(stationid='COOP:010008")

out3 <- ncdc_stations(datasetid="PRECIP_HLY', startdate='19900101",

56 ncdc_datacats

enddate='19901231")
out4 <- ncdc_stations(datasetid="'GHCND', locationid='FIPS:12017')
ncdc_combine(outl, out2, out3, out4)

try to combine two different classes

outl <- ncdc_locs_cats(startdate='1970-01-01")

out2 <- ncdc_stations(stationid='COOP:010008")

out3 <- ncdc_locs_cats(locationcategoryid="'CLIM_REG')
ncdc_combine(outl, out2, out3)

End(Not run)

ncdc_datacats Get possible data categories for a particular datasetid, locationid, sta-
tionid, etc.

Description

Data Categories represent groupings of data types.

Usage

ncdc_datacats(
datasetid = NULL,
datacategoryid = NULL,
stationid = NULL,
locationid = NULL,
startdate = NULL,
enddate = NULL,
sortfield = NULL,
sortorder = NULL,

limit = 25,
offset = NULL,
token = NULL,
)
Arguments
datasetid Accepts a valid dataset id or a vector or list of dataset id’s. Data returned will be

from the dataset specified, see datasets() (required)

datacategoryid A valid data category id. Data types returned will be associated with the data
category(ies) specified

stationid Accepts a valid station id or a vector or list of station ids (optional)
locationid Accepts a valid location id or a vector or list of location id’s. (optional)
startdate Accepts valid ISO formated date (yyyy-mm-dd). Data returned will have data

after the specified date. Paramater can be use independently of enddate (op-
tional)

ncdc_datacats 57

enddate Accepts valid ISO formated date (yyyy-mm-dd). Data returned will have data
before the specified date. Paramater can be use independently of startdate (op-
tional)

sortfield The field to sort results by. Supports id, name, mindate, maxdate, and datacov-

erage fields (optional)

sortorder Which order to sort by, asc or desc. Defaults to asc (optional)

limit Defaults to 25, limits the number of results in the response. Maximum is 1000
(optional)

offset Defaults to 0, used to offset the resultlist (optional)

token This must be a valid token token supplied to you by NCDC’s Climate Data

Online access token generator. (required) See Authentication section below for
more details.

Curl options passed on to HttpClient

Details
Note that calls with both startdate and enddate don’t seem to work, though specifying one or the
other mostly works.

Value

A data. frame for all datasets, or a list of length two, each with a data.frame.

Authentication

Get an API key (aka, token) at https://www.ncdc.noaa.gov/cdo-web/token You can pass your token
in as an argument or store it one of two places:

* your .Rprofile file with the entry options(noaakey = "your-noaa-token")

* your .Renviron file with the entry NOAA_KEY=your-noaa-token

See Startup for information on how to create/find your .Rrofile and .Renviron files

References

https://www.ncdc.noaa.gov/cdo-web/webservices/v2

See Also

Other ncdc: ncdc_combine (), ncdc_datasets(), ncdc_datatypes(), ncdc_locs_cats(), ncdc_locs(),
ncdc_plot(), ncdc_stations(), ncdc()

58 ncdc_datasets

Examples

Not run:
Limit to 10 results
ncdc_datacats(limit=10)

by datasetid
ncdc_datacats(datasetid="ANNUAL")
ncdc_datacats(datasetid=c("ANNUAL", "PRECIP_HLY"))

Single data category
ncdc_datacats(datacategoryid="ANNAGR")

Fetch data categories for a given set of locations
ncdc_datacats(locationid="CITY:US390029"')
ncdc_datacats(locationid=c('CITY:US390029', 'FIPS:37'))

Data categories for a given date
ncdc_datacats(startdate = '2013-10-01")

Get data categories with data for a series of the same parameter arg, in this case
stationid's

ncdc_datacats(stationid="'COOP:310090"')
ncdc_datacats(stationid=c('COOP:310090"', 'COOP:310184"', 'CO0P:310212"))

Curl debugging
ncdc_datacats(limit=10, verbose = TRUE)

End(Not run)

ncdc_datasets Search NOAA datasets

Description

From the NOAA API docs: All of our data are in datasets. To retrieve any data from us, you must
know what dataset it is in.

Usage

ncdc_datasets(
datasetid = NULL,
datatypeid = NULL,
stationid = NULL,
locationid = NULL,
startdate = NULL,
enddate = NULL,
sortfield = NULL,
sortorder = NULL,
limit = 25,

ncdc_datasets 59

offset = NULL,

token = NULL,
)
Arguments

datasetid (optional) Accepts a single valid dataset id. Data returned will be from the
dataset specified.

datatypeid Accepts a valid data type id or a vector or list of data type ids. (optional)

stationid Accepts a valid station id or a vector or list of station ids

locationid Accepts a valid location id or a vector or list of location ids (optional)

startdate (optional) Accepts valid ISO formated date (yyyy-mm-dd) or date time (YYY Y-
MM-DDThh:mm:ss). Data returned will have data after the specified date. The
date range must be less than 1 year.

enddate (optional) Accepts valid ISO formated date (yyyy-mm-dd) or date time (YYY Y-
MM-DDThh:mm:ss). Data returned will have data before the specified date.
The date range must be less than 1 year.

sortfield The field to sort results by. Supports id, name, mindate, maxdate, and datacov-
erage fields (optional)

sortorder Which order to sort by, asc or desc. Defaults to asc (optional)

limit Defaults to 25, limits the number of results in the response. Maximum is 1000
(optional)

offset Defaults to 0, used to offset the resultlist (optional)

token This must be a valid token token supplied to you by NCDC’s Climate Data
Online access token generator. (required) See Authentication section below for
more details.
Curl options passed on to HttpClient (optional)

Value

A data.frame for all datasets, or a list of length two, each with a data.frame.

Authentication

Get an API key (aka, token) at https://www.ncdc.noaa.gov/cdo-web/token You can pass your token
in as an argument or store it one of two places:

* your .Rprofile file with the entry options(noaakey = "your-noaa-token")

* your .Renviron file with the entry NOAA_KEY=your-noaa-token

See Startup for information on how to create/find your .Rrofile and .Renviron files

References

https://www.ncdc.noaa.gov/cdo-web/webservices/v2

60 ncdc_datatypes

See Also

Other ncdc: ncdc_combine(), ncdc_datacats(), ncdc_datatypes(), ncdc_locs_cats(), ncdc_locs(),
ncdc_plot(), ncdc_stations(), ncdc()

Examples

Not run:
Get a table of all datasets
ncdc_datasets()

Get details from a particular dataset
ncdc_datasets(datasetid="ANNUAL")

Get datasets with Temperature at the time of observation (TOBS) data type
ncdc_datasets(datatypeid="'TOBS")

two datatypeid's

ncdc_datasets(datatypeid=c('TOBS', "ACMH"))

Get datasets with data for a series of the same parameter arg, in this case
stationid's

ncdc_datasets(stationid="'COOP:310090"')
ncdc_datasets(stationid=c('COOP:310090', 'COOP:310184"', 'COOP:310212"))

Multiple datatypeid's
ncdc_datasets(datatypeid=c('ACMC', 'ACMH', 'ACSC'))
ncdc_datasets(datasetid="ANNUAL', datatypeid=c('ACMC','ACMH', 'ACSC"))
ncdc_datasets(datasetid="'GSOY', datatypeid=c('ACMC','ACMH','ACSC'))

Multiple locationid's
ncdc_datasets(locationid="FIPS:30091")
ncdc_datasets(locationid=c("FIPS:30103", "FIPS:30091"))

End(Not run)

ncdc_datatypes Get possible data types for a particular dataset

Description

From the NOAA API docs: Describes the type of data, acts as a label. For example: If it’s 64
degrees out right now, then the data type is Air Temperature and the data is 64.

Usage

ncdc_datatypes(
datasetid = NULL,
datatypeid = NULL,
datacategoryid = NULL,
stationid = NULL,

ncdc_datatypes

locationid = NULL,
startdate = NULL,
enddate = NULL,

sortfield = NULL,
sortorder = NULL,

61

limit = 25,
offset = NULL,
token = NULL,
)
Arguments
datasetid (optional) Accepts a valid dataset id or a vector or list of them. Data returned
will be from the dataset specified.
datatypeid Accepts a valid data type id or a vector or list of data type ids. (optional)
datacategoryid Optional. Accepts a valid data category id or a vector or list of data category ids
(although it is rare to have a data type with more than one data category)
stationid Accepts a valid station id or a vector or list of station ids
locationid Accepts a valid location id or a vector or list of location ids (optional)
startdate (optional) Accepts valid ISO formated date (yyyy-mm-dd) or date time (YYY Y-
MM-DDThh:mm:ss). Data returned will have data after the specified date. The
date range must be less than 1 year.
enddate (optional) Accepts valid ISO formated date (yyyy-mm-dd) or date time (YYY Y-
MM-DDThh:mm:ss). Data returned will have data before the specified date.
The date range must be less than 1 year.
sortfield The field to sort results by. Supports id, name, mindate, maxdate, and datacov-
erage fields (optional)
sortorder Which order to sort by, asc or desc. Defaults to asc (optional)
limit Defaults to 25, limits the number of results in the response. Maximum is 1000
(optional)
offset Defaults to 0, used to offset the resultlist (optional)
token This must be a valid token token supplied to you by NCDC’s Climate Data
Online access token generator. (required) See Authentication section below for
more details.
Curl options passed on to HttpClient (optional)
Value

A data. frame for all datasets, or a list of length two, each with a data.frame

Authentication

Get an API key (aka, token) at https://www.ncdc.noaa.gov/cdo-web/token You can pass your token
in as an argument or store it one of two places:

62 ncdc_datatypes

* your .Rprofile file with the entry options(noaakey = "your-noaa-token")

* your .Renviron file with the entry NOAA_KEY=your-noaa-token

See Startup for information on how to create/find your .Rrofile and .Renviron files

References

https://www.ncdc.noaa.gov/cdo-web/webservices/v2

See Also

Other ncdc: ncdc_combine(), ncdc_datacats(), ncdc_datasets(), ncdc_locs_cats(), ncdc_locs(),
ncdc_plot(), ncdc_stations(), ncdc()

Examples

Not run:
Fetch available data types
ncdc_datatypes()

Fetch more information about the ACMH data type id, or the ACSC
ncdc_datatypes(datatypeid="ACMH")
ncdc_datatypes(datatypeid="ACSC")

datasetid, one or many

ANNUAL should be replaced by GSOY, but both exist and give
different answers

ncdc_datatypes(datasetid="ANNUAL")
ncdc_datatypes(datasetid="GS0Y")
ncdc_datatypes(datasetid=c("ANNUAL", "PRECIP_HLY"))

Fetch data types with the air temperature data category
ncdc_datatypes(datacategoryid="TEMP", limit=56)
ncdc_datatypes(datacategoryid=c("TEMP", "AUPRCP"))

Fetch data types that support a given set of stations
ncdc_datatypes(stationid="'COOP:310090")
ncdc_datatypes(stationid=c('COOP:310090@', 'COOP:310184"','CO0P:310212"'))

Fetch data types that support a given set of loncationids
ncdc_datatypes(locationid="CITY:AG0OQ000Q1")
ncdc_datatypes(locationid=c('CITY:AG0Q0Q001", 'CITY:AGOQ0004"))

End(Not run)

ncdc_locs 63

ncdc_locs Get metadata about NOAA NCDC locations.

Description

From the NOAA NCDC API docs: Locations can be a specific latitude/longitude point such as a
station, or a label representing a bounding area such as a city.

Usage
ncdc_locs(
datasetid = NULL,
locationid = NULL,
locationcategoryid = NULL,
startdate = NULL,
enddate = NULL,
sortfield = NULL,
sortorder = NULL,
limit = 25,
offset = NULL,
token = NULL,
)
Arguments
datasetid A valid dataset id or a vector or list of dataset id’s. Data returned will be from
the dataset specified, see datasets() (required)
locationid A valid location id or a vector or list of location ids.
locationcategoryid
A valid location id or a vector or list of location category ids
startdate A valid ISO formatted date (yyyy-mm-dd). Data returned will have data after
the specified date. Paramater can be use independently of enddate (optional)
enddate Accepts valid ISO formatted date (yyyy-mm-dd). Data returned will have data
before the specified date. Paramater can be use independently of startdate (op-
tional)
sortfield The field to sort results by. Supports id, name, mindate, maxdate, and datacov-
erage fields (optional)
sortorder Which order to sort by, asc or desc. Defaults to asc (optional)
limit Defaults to 25, limits the number of results in the response. Maximum is 1000
(optional)
offset Defaults to 0, used to offset the resultlist (optional)
token This must be a valid token token supplied to you by NCDC’s Climate Data

Online access token generator. (required) See Authentication section below for
more details.

Curl options passed on to HttpClient

64 ncdc_locs

Value

A list containing metadata and the data, or a single data.frame.

Authentication

Get an API key (aka, token) at https://www.ncdc.noaa.gov/cdo-web/token You can pass your token
in as an argument or store it one of two places:

* your .Rprofile file with the entry options(noaakey = "your-noaa-token")

* your .Renviron file with the entry NOAA_KEY=your-noaa-token

See Startup for information on how to create/find your .Rrofile and .Renviron files

References

https://www.ncdc.noaa.gov/cdo-web/webservices/v2

See Also

Other ncdc: ncdc_combine (), ncdc_datacats(), ncdc_datasets(), ncdc_datatypes(), ncdc_locs_cats(),
ncdc_plot(), ncdc_stations(), ncdc()

Examples

Not run:
All locations, first 25 results
ncdc_locs()

Fetch more information about location id FIPS:37
ncdc_locs(locationid="'FIPS:37")

Fetch available locations for the GHCND (Daily Summaries) dataset
ncdc_locs(datasetid="GHCND')

ncdc_locs(datasetid=c('GHCND', "ANNUAL'))
ncdc_locs(datasetid=c('GSOY', 'ANNUAL'))
ncdc_locs(datasetid=c('GHCND', 'GSOM'))

Fetch all U.S. States
ncdc_locs(locationcategoryid="ST', limit=52)

Many locationcategoryid's

this apparently works, but returns nothing often with multiple
locationcategoryid's

ncdc_locs(locationcategoryid=c('ST', 'ZIP'))

Fetch list of city locations in descending order
ncdc_locs(locationcategoryid="'CITY', sortfield='name', sortorder='desc')

End(Not run)

ncdc_locs_cats 65

ncdc_locs_cats Get metadata about NOAA location categories.

Description

Location categories are groupings of similar locations.

Usage

ncdc_locs_cats(
datasetid = NULL,
locationcategoryid = NULL,
startdate = NULL,
enddate = NULL,
sortfield = NULL,
sortorder = NULL,

limit = 25,
offset = NULL,
token = NULL,
)
Arguments
datasetid A valid dataset id or a vector or list of dataset id’s. Data returned will be from
the dataset specified, see datasets() (required)
locationcategoryid
A valid location id or a vector or list of location category ids
startdate A valid ISO formatted date (yyyy-mm-dd). Data returned will have data after
the specified date. Paramater can be use independently of enddate (optional)
enddate Accepts valid ISO formatted date (yyyy-mm-dd). Data returned will have data
before the specified date. Paramater can be use independently of startdate (op-
tional)
sortfield The field to sort results by. Supports id, name, mindate, maxdate, and datacov-
erage fields (optional)
sortorder Which order to sort by, asc or desc. Defaults to asc (optional)
limit Defaults to 25, limits the number of results in the response. Maximum is 1000
(optional)
offset Defaults to 0, used to offset the resultlist (optional)
token This must be a valid token token supplied to you by NCDC’s Climate Data

Online access token generator. (required) See Authentication section below for
more details.

Curl options passed on to HttpClient

66 ncdc_locs_cats

Details
Locations can be a specific latitude/longitude point such as a station, or a label representing a
bounding area such as a city.

Value

A list containing metadata and the data, or a single data.frame.

Authentication

Get an API key (aka, token) at https://www.ncdc.noaa.gov/cdo-web/token You can pass your token
in as an argument or store it one of two places:

* your .Rprofile file with the entry options(noaakey = "your-noaa-token")

* your .Renviron file with the entry NOAA_KEY=your-noaa-token

See Startup for information on how to create/find your .Rrofile and .Renviron files

References

https://www.ncdc.noaa.gov/cdo-web/webservices/v2

See Also

Other ncdc: ncdc_combine(), ncdc_datacats(), ncdc_datasets(), ncdc_datatypes(), ncdc_locs(),
ncdc_plot(), ncdc_stations(), ncdc()

Examples

Not run:
All location categories, first 25 results
ncdc_locs_cats()

Find locations with category id of CLIM_REG
ncdc_locs_cats(locationcategoryid="'CLIM_REG')

Displays available location categories within GHCN-Daily dataset
ncdc_locs_cats(datasetid="GHCND')

ncdc_locs_cats(datasetid="GSOY")
ncdc_locs_cats(datasetid="ANNUAL")

multiple datasetid's
ncdc_locs_cats(datasetid=c('GHCND', 'GSOM'))

Displays available location categories from start date 1970-01-01
ncdc_locs_cats(startdate='1970-01-01")

End(Not run)

ncdc_plot 67

ncdc_plot Plot NOAA climate data.

Description

Plot NOAA climate data.

Usage

ncdc_plot(..., breaks = NULL, dateformat = "%d/%m/%y")

Arguments

Input noaa object or objects.

breaks Regularly spaced date breaks for x-axis. See examples for usage. See date_breaks.
Default: NULL (uses ggplot2 default break sformatting)
dateformat Date format using standard POSIX specification for labels on x-axis. See date_format ()
Details

This function accepts directly output from the ncdc () function, not other functions.

This is a simple wrapper function around some ggplot2 code. There is indeed a lot you can modify
in your plots, so this function just does some basic stuff. Look at the internals for what the function
does.

Value

ggplot2 plot

See Also

Other ncdc: ncdc_combine (), ncdc_datacats(), ncdc_datasets(), ncdc_datatypes(), ncdc_locs_cats(),
ncdc_locs(), ncdc_stations(), ncdc()

Examples

Not run:

Search for data first, then plot

out <- ncdc(datasetid="GHCND', stationid='GHCND:USWQ0014895', datatypeid='PRCP',
startdate = '2010-05-01', enddate = '2010-10-31', 1limit=500)

ncdc_plot(out)

ncdc_plot(out, breaks="14 days")

ncdc_plot(out, breaks="1 month"”, dateformat="%d/%m")

ncdc_plot(out, breaks="1 month"”, dateformat="%d/%m")

Combine many calls to ncdc function
outl <- ncdc(datasetid='GHCND', stationid='GHCND:USWQ@014895', datatypeid='PRCP',
startdate = '2010-03-01', enddate = '2010-05-31', 1imit=500)

68 ncdc_stations

out2 <- ncdc(datasetid='GHCND', stationid='GHCND:USW@@014895', datatypeid='PRCP',
startdate = '2010-09-01', enddate = '2010-10-31', 1imit=500)

df <- ncdc_combine(outl, out2)

ncdc_plot (df)

or pass in each element separately

ncdc_plot(outl, out2, breaks="45 days")

End(Not run)

ncdc_stations Get metadata about NOAA NCDC stations.

Description

From the NOAA NCDC API docs: Stations are where the data comes from (for most datasets) and
can be considered the smallest granual of location data. If you know what station you want, you
can quickly get all manner of data from it

Usage

ncdc_stations(
stationid = NULL,
datasetid = NULL,
datatypeid = NULL,
locationid = NULL,
startdate = NULL,
enddate = NULL,
sortfield = NULL,
sortorder = NULL,
limit = 25,
offset = NULL,
datacategoryid = NULL,
extent = NULL,
token = NULL,
dataset = NULL,
station = NULL,
location = NULL,
locationtype = NULL,

page = NULL,
)
Arguments
stationid A single valid station id, with datasetid namespace, e.g., GHCND:USW00014895
datasetid (optional) Accepts a valid dataset id or a vector or list of them. Data returned

will be from the dataset specified.

ncdc_stations

datatypeid
locationid
startdate

enddate

sortfield

sortorder

limit

offset
datacategoryid

extent

token

dataset
station
location

locationtype

page

Value

A list of metadata.

Authentication

69

Accepts a valid data type id or a vector or list of data type ids. (optional)
Accepts a valid location id or a vector or list of location ids (optional)

(optional) Accepts valid ISO formated date (yyyy-mm-dd) or date time (YYY Y-
MM-DDThh:mm:ss). Data returned will have data after the specified date. The
date range must be less than 1 year.

(optional) Accepts valid ISO formated date (yyyy-mm-dd) or date time (YYY Y-
MM-DDThh:mm:ss). Data returned will have data before the specified date.
The date range must be less than 1 year.

The field to sort results by. Supports id, name, mindate, maxdate, and datacov-
erage fields (optional)

Which order to sort by, asc or desc. Defaults to asc (optional)

Defaults to 25, limits the number of results in the response. Maximum is 1000
(optional)

Defaults to 0, used to offset the resultlist (optional)

(character, optional) Accepts a valid data category id or a vector or list of data
category ids.

(numeric, optional) The geographical extent for which you want to search. Give
four values that defines a bounding box, lat and long for the southwest corner,
then lat and long for the northeast corner. For example: c(minlat, minlong,
maxlat, maxlong).

This must be a valid token token supplied to you by NCDC’s Climate Data
Online access token generator. (required) See Authentication section below for
more details.

THIS IS A DEPRECATED ARGUMENT. See datasetid.
THIS IS A DEPRECATED ARGUMENT. See stationid.
THIS IS A DEPRECATED ARGUMENT. See locationid.

THIS IS A DEPRECATED ARGUMENT. There is no equivalent argument in
v2 of the NOAA APIL.

THIS IS A DEPRECATED ARGUMENT. There is no equivalent argument in
v2 of the NOAA APL

Curl options passed on to HttpClient (optional)

Get an API key (aka, token) at https://www.ncdc.noaa.gov/cdo-web/token You can pass your token
in as an argument or store it one of two places:

* your .Rprofile file with the entry options(noaakey = "your-noaa-token")

* your .Renviron file with the entry NOAA_KEY=your-noaa-token

See Startup for information on how to create/find your .Rrofile and .Renviron files

70 ncdc_stations

References

https://www.ncdc.noaa.gov/cdo-web/webservices/v2

See Also

Other ncdc: ncdc_combine(), ncdc_datacats(), ncdc_datasets(), ncdc_datatypes(), ncdc_locs_cats(),
ncdc_locs(), ncdc_plot (), ncdc()

Examples

Not run:

Get metadata on all stations
ncdc_stations()
ncdc_stations(limit=5)

Get metadata on a single station
ncdc_stations(stationid="'COOP:010008")

For many stations use lapply or similar
lapply(c(”"COOP:010008", "COOP:010063", "COOP:010116"), function(z) {
ncdc_stations(
startdate = "2013-01-01",
enddate = "2014-11-01",
stationid = z)
}$data)

Displays all stations within GHCN-Daily (100 Stations per page limit)
ncdc_stations(datasetid = "GHCND')

ncdc_stations(datasetid = "ANNUAL')

ncdc_stations(datasetid = 'GSOY')

Station
ncdc_stations(datasetid="NORMAL_DLY', stationid='GHCND:USW@0014895")

datatypeid
ncdc_stations(datatypeid="ANN-HTDD-NORMAL")
ncdc_stations(datatypeid=c(”ANN-HTDD-NORMAL", "ACSC"))

locationid

ncdc_stations(locationid="CITY:AGQQ0001")
ncdc_stations(locationid="FIPS:30091")
ncdc_stations(locationid=c("FIPS:30103", "FIPS:30091"))

datacategoryid
ncdc_stations(datacategoryid="ANNPRCP")
ncdc_stations(datacategoryid="AUAGR")
ncdc_stations(datacategoryid=c("ANNPRCP", "AUAGR"))

Displays all stations within GHCN-Daily (Displaying page 10 of the results)
ncdc_stations(datasetid="'GHCND")

Specify datasetid and locationid

rnoaa-defunct 71

ncdc_stations(datasetid="'GHCND', locationid='FIPS:12017")

Specify datasetid, locationid, and station
ncdc_stations(datasetid="'GHCND', locationid='FIPS:12017', stationid='GHCND:USC00084289"')

Specify datasetid, locationidtype, locationid, and station
ncdc_stations(datasetid="'GHCND', locationid='FIPS:12017', stationid='GHCND:USC00084289"')

Displays list of stations within the specified county
ncdc_stations(datasetid="'GHCND', locationid='FIPS:12017")

Displays list of Hourly Precipitation locationids between ©01/01/1990 and 12/31/1990
ncdc_stations(datasetid='PRECIP_HLY', startdate='19900101', enddate='19901231")

Search for stations by spatial extent
Search using a bounding box, w/ lat/long of the SW corner, then of NE corner

ncdc_stations(extent=c(47.5204,-122.2047,47.6139,-122.1065))

End(Not run)

rnoaa-defunct Defunct functions in rnoaa

Description

* noaa: Function name changed, prefixed with ncdc now

* noaa_datacats: Function name changed, prefixed with ncdc now
* noaa_datasets: Function name changed, prefixed with ncdc now
* noaa_datatypes: Function name changed, prefixed with ncdc now
* noaa_locs: Function name changed, prefixed with ncdc now

* noaa_locs_cats: Function name changed, prefixed with ncdc now
* noaa_stations: Function name changed, prefixed with ncdc now
* noaa_plot: Function name changed, prefixed with ncdc now

* noaa_combine: Function name changed, prefixed with ncdc now

* noaa_seaice: Function name changed to seaice

* erddap_data: See package rerddap

* erddap_clear_cache: See package rerddap

* erddap_datasets: Moved to package rerddap

* erddap_grid: Moved to package rerddap

e erddap_info: Moved to rerddap: :info()

* erddap_search: Moved to rerddap: :ed_search

e erddap_table: Moved to rerddap: : tabledap

e ncdc_leg_variables: Removed. See NCDC Legacy below

72 rnoaa_caching

* ncdc_leg_sites: Removed. See NCDC Legacy below

¢ ncdc_leg_site_info: Removed. See NCDC Legacy below

¢ ncdc_leg_data: Removed. See NCDC Legacy below

* seaice: Replaced with sea_ice()

* lcd_cleanup: No longer available. See 1cd docs

* ghcnd_clear_cache: No longer available. See rnoaa_caching
¢ storm_shp: Function defunct.

e storm_shp_read: Function defunct.

* storm_data: Function defunct.

e storm_meta: Function defunct.

Details

The functions for working with GEFS ensemble forecast data (prefixed with "gefs") are defunct,
but may come back to rnoaa later:

* gefsQ)

* gefs_dimension_values()

e gefs_dimensions()

e gefs_ensembles()

e gefs_latitudes()

e gefs_longitudes()

e gefs_times()

» gefs_variables()

NCDC Legacy

The NCDC legacy API is too unreliable and slow. Use the newer NCDC API via the functions
ncdc(), ncdc_datacats(), ncdc_datasets(), ncdc_datatypes(), ncdc_locs(), ncdc_locs_cats(),
ncdc_stations(), ncdc_plot(), and ncdc_combine()

rnoaa_caching rnoaa caching

Description

Manage data caches

rnoaa_caching

Details

To get the cache directory for a data source, see the method x$cache_path_get ()

73

cache_delete only accepts 1 file name, while cache_delete_all doesn’t accept any names, but

deletes all files. For deleting many specific files, use cache_delete in a lapply () type call

Note that cached files will continue to be used until they are deleted. It’s possible to run into
problems when changes happen in your R setup. For example, at least one user reported changing
versions of this package and running into problems because a cached data file from a previous
version of rnoaa did not work with the newer version of rnoaa. You should occasionally delete all
cached files.

Useful user functions

Assuming x is a HoardClient class object, e.g., 1lcd_cache

Caching

See Also

x$cache_path_get () get cache path
x$cache_path_set () set cache path

x$1list () returns a character vector of full path file names
x$files() returns file objects with metadata
x$details() returns files with details

x$delete() delete specific files

x$delete_all() delete all files, returns nothing

objects for each data source

isd()/isd_stations(): isd_cache
cpc_prcp(): cpc_cache

arc2(): arc2_cache

lcd(): 1cd_cache

bsw(): bsw_cache

ersst(): ersst_cache

tornadoes(): torn_cache
ghend()/ghend_search(): ghcend_cache

se_data()/se_files(): stormevents_cache

rnoaa_options() for managing whether you see messages about cached files when you request

data

74 sea_ice

rnoaa_options rnoaa options

Description

rnoaa options

Usage

rnoaa_options(cache_messages = TRUE)

Arguments
cache_messages (logical) whether to emit messages with information on caching status for func-
tion calls that can cache data. default: TRUE
Details

rnoaa package level options; stored in an internal package environment roenv

See Also

rnoaa_caching for managing cached files

Examples

Not run:
rnoaa_options(cache_messages = FALSE)

End(Not run)

sea_ice Get sea ice data.

Description

Get sea ice data.

Usage

sea_ice(year = NULL, month = NULL, pole = NULL, format = "shp"”, ...)

sea_ice 75

Arguments
year (numeric) a year
month (character) a month, as character abbrevation of a month
pole (character) one of S (south) or N (north)
format (character) one of shp (default), geotiff-extent (for geotiff extent data), or geotiff-
conc (for geotiff concentration data)
Further arguments passed on to rgdal: :readshpfile() if format="shp" or
raster::raster() if not
Value

data.frame if format="shp" (a fortified sp object); raster: :raster() if not

References

See the "User Guide" pdf at https://nsidc.org/data/g02135

See Also

sea_ice_tabular()

Examples

Not run:
if (requireNamespace("raster”)) {

one year, one moth, one pole

sea_ice(year = 1990, month = "Apr"”, pole = "N")

sea_ice(year = 1990, month = "Apr”, pole = "N", format = "geotiff-extent")
sea_ice(year = 1990, month = "Apr"”, pole = "N", format = "geotiff-conc")

one year, one month, many poles
sea_ice(year = 1990, month = "Apr")

one year, many months, many poles
sea_ice(year = 1990, month = c("Apr"”, "Jun", "Oct"))

many years, one month, one pole
sea_ice(year = 1990:1992, month = "Sep"”, pole = "N")

get geotiff instead of shp data.

X <- sea_ice(year = 1990, month = "Apr"”, format = "geotiff-extent")
y <- sea_ice(year = 1990, month = "Apr"”, format = "geotiff-conc")
3

End(Not run)

76 sea_ice_tabular

sea_ice_tabular Sea ice tabular data

Description
Collects .csv files from NOAA, and binds them together into a single data.frame. Data across
years, with extent and area of ice.

Usage

sea_ice_tabular(...)

Arguments
Curl options passed on to crul::verb-GET - beware that curl options are passed
to each http request, for each of 24 requests.

Details

An example file, for January, North pole: https://sidads.colorado.edu/DATASETS/NOAA/GO2135/north/monthly/dat:

a value in any cell of -9999 indicates missing data

Value
A data.frame with columns:
* year (integer)
* mo (integer)
* data.type (character)
* region (character)
¢ extent (numeric)

e area (numeric)

See Also

sea_ice()

Examples

Not run:
df <- sea_ice_tabular()
df

End(Not run)

storm_events 77

storm_events NOAA Storm Events data

Description

NOAA Storm Events data

Usage
se_data(year, type, overwrite = TRUE, ...)
se_files(...)
Arguments
year (numeric) a four digit year. see output of se_files() for available years. re-
quired.
type (character) one of details, fatalities, locations, or legacy. required.
overwrite (logical) To overwrite the path to store files in or not, Default: TRUE
Curl options passed on to crul::verb-GET (optional)
Value
A tibble (data.frame)
Note

See stormevents_cache for managing cached files

References

https://www.ncdc.noaa.gov/stormevents/

Examples

Not run:

get list of files and their urls
res <- se_files()

res

tail(res)

get data
x <- se_data(year = 2013, type = "details")

X

<- se_data(year = 1988, type = "fatalities")

N N

78 swdi

w <- se_data(year = 2003, type = "locations")
w

leg <- se_data(year = 2003, type = "legacy")
leg

End(Not run)

swdi Get NOAA data for the Severe Weather Data Inventory (SWDI)

Description

Get NOAA data for the Severe Weather Data Inventory (SWDI)

Usage
swdi(
dataset = NULL,
format = "xml",

startdate = NULL,
enddate = NULL,
limit = 25,
offset = NULL,
radius = NULL,
center = NULL,

bbox = NULL,
tile = NULL,
stat = NULL,
id = NULL,

filepath = NULL,

Arguments
dataset Dataset to query. See below for details.
format File format to download. One of xml, csv, shp, or kmz.
startdate Start date. See details.
enddate End date. See details.
limit Number of results to return. Defaults to 25. Any number from 1 to 10000000.
Time out issues likely to occur at higher limits.
offset Any number from 1 to 10000000. Default is NULL, no offset, start from 1.
radius Search radius in miles (current limit is 15 miles). BEWARE: As far as we know,

this parameter doesn’t do anything, or at least does not in fact limit the search to
the given radius. DO NOT USE.

swdi 79

center Center coordinate in lon,lat decimal degree format, e.g.: ¢(-95.45,36.88)

bbox Bounding box in format of minLon,minLat,maxLon,maxLat, e.g.: c(-91,30,-
90,31)

tile Coordinate in lon,lat decimal degree format, e.g.: c(-95.45,36.88). The lat/lon

values are rounded to the nearest tenth of degree. For the above example, the
matching tile would contain values from -95.4500 to -95.5499 and 36.8500 to
36.9499

stat One of count or tilesum:$longitude,$latitude. Setting stat="count’ returns num-
ber of results only (no actual data). stat="tilesum:$longitude,$latitude’ returns
daily feature counts for a tenth of a degree grid centered at the nearest tenth of a
degree to the supplied values.

id An identifier, e.g., 533623. Not sure how you find these ids?

filepath If kmz or shp chosen the file name and optionally path to write to. Ignored
format=xml or format=csv (optional)

Curl options passed on to crul::verb-GET (optional)

Details
Options for the dataset parameter. One of (and their data formats):

* nx3tvs NEXRAD Level-3 Tornado Vortex Signatures (point)

* nx3meso NEXRAD Level-3 Mesocyclone Signatures (point)

* nx3hail NEXRAD Level-3 Hail Signatures (point)

* nx3structure NEXRAD Level-3 Storm Cell Structure Information (point)

* plsr Preliminary Local Storm Reports (point)

» warn Severe Thunderstorm, Tornado, Flash Flood and Special Marine warnings (polygon)

* nldn Lightning strikes from Vaisala. Available to government and military users only. If you
aren’t one of those, you’ll get a 400 status stop message if you request data from this dataset

(point)

For startdate and enddate, the date range syntax is ’startDate:endDate’ or special option of ’peri-
odOfRecord’. Note that startDate is inclusive and endDate is exclusive. All dates and times are in
GMT. The current limit of the date range size is one year.

All latitude and longitude values for input parameters and output data are in the WGS84 datum.

Value

If xml or csv chosen, a list of length three, a slot of metadata (meta), a slot for data (data), and a slot
for shape file data with a single column ’shape’. The meta slot is a list of metadata elements, and
the data slot is a data.frame, possibly of length zero if no data is found.

If kmz or shp chosen, the file is downloaded to your machine and a message is printed.

References

https://www.ncdc.noaa.gov/ncei-severe-weather-data-inventory https://www.ncdc.noaa.gov/swdiws/

80 swdi

Examples

Not run:
Search for nx3tvs data from 5 May 2006 to 6 May 2006
swdi(dataset="nx3tvs', startdate='20060505', enddate='20060506")

Get all 'nx3tvs' near latitude = 32.7 and longitude = -102.0
swdi(dataset="nx3tvs', startdate='20060506', enddate='20060507",
center=c(-102.90,32.7))

use an id
swdi(dataset="warn', startdate='20060506', enddate='20060507', id=533623)

Get all 'plsr' within the bounding box (-91,30,-90,31)
swdi(dataset="plsr', startdate='20060505', enddate='20060510",
bbox=c(-91,30,-90,31))

Get all 'nx3tvs' within the tile -102.1/32.6 (-102.15,32.55,-102.25,32.65)
swdi(dataset="nx3tvs', startdate='20060506', enddate='20060507",
tile=c(-102.12,32.62))

Counts
Note: stat='count' will only return metadata, nothing in the data or shape slots
Note: stat='tilesum:...' returns counts in the data slot for each date for that tile,

and shape data

Get number of 'nx3tvs' near latitude = 32.7 and longitude = -102.0
swdi(dataset="nx3tvs', startdate='20060505', enddate='20060516",
center=c(-102.0,32.7), stat='count')

Get daily count nx3tvs features on .1 degree grid centered at latitude = 32.7
and longitude = -102.0

swdi(dataset="nx3tvs', startdate='20060505', enddate='20090516",
stat="tilesum:-102.0,32.7")

CSV format
swdi(dataset="nx3tvs', startdate='20060505', enddate='20060506', format='csv')

SHP format
swdi(dataset="nx3tvs', startdate='20060505', enddate='20060506', format='shp',
filepath="myfile')

KMZ format
swdi(dataset="nx3tvs', startdate='20060505', enddate='20060506', format='kmz',
filepath="myfile.kmz")

csv output to SpatialPointsDataFrame

res <- swdi(dataset="nx3tvs', startdate='20060505', enddate='20060506', format="csv")
library('sp"')

coordinates(res$data) <- ~lon + lat

res$data

class(res$data)

End(Not run)

tornadoes 81

tornadoes Get NOAA tornado data.

Description

This function gets spatial paths of tornadoes from NOAA’s National Weather Service Storm Predic-
tion Center Severe Weather GIS web page.

Usage

tornadoes(...)

Arguments

Curl options passed on to crul::verb-GET (optional)

Value

A Spatial object is returned of class SpatialLinesDataFrame.

Note

See torn_cache for managing cached files

References

https://www.spc.noaa.gov/gis/svrgis/

Examples

Not run:

shp <- tornadoes()

library('sp"')

if (interactive()) {
may take 10 sec or so to render
plot(shp)

}

End(Not run)

82 VIS_MISS

vis_miss Visualize missingness in a dataframe

Description

Gives you an at-a-glance ggplot of the missingness inside a dataframe, colouring cells according to
missingness, where black indicates a present cell and grey indicates a missing cell. As it returns a
ggplot object, it is very easy to customize and change labels, and so on.

Usage

vis_miss(x, cluster = FALSE, sort_miss = FALSE)

Arguments
X a data.frame
cluster logical TRUE/FALSE. TRUE specifies that you want to use hierarchical clustering
(mcquitty method) to arrange rows according to missingness. FALSE specifies
that you want to leave it as is.
sort_miss logical TRUE/FALSE. TRUE arranges the columns in order of missingness.
Details

vis_miss visualises a data.frame to display missingness. This is taken from the visdat package,
currently only available on github: https://github.com/tierneyn/visdat

Examples

Not run:
monitors <- c("ASN@0Q03003", "ASMO0094299")
weather_df <- meteo_pull_monitors(monitors)
vis_miss(weather_df)

End(Not run)

Index

x datasets cpc_prep, 14
fipscodes, 16 crul::HttpClient, 17, 20, 22, 23
rnoaa_caching, 72 crul::verb-GET, 5,7, 9, 11, 14, 15, 26-28,
* isd 35,76,77,79, 81
isd, 27
isd_read, 30 date_breaks, 67
isd_stations, 31 date_format(), 67
isd_stations_search, 33 dplyr::filter(), 33
* meteo
ersst, 15

meteo_clear_cache, 36

meteo_show_cache, 45 ersst_cache, 16

ersst_cache (rnoaa_caching), 72

* nede
ncdc, 50 fipscodes, 16
ncdc_combine, 54
ncdc_datacats, 56 gefs(), 72
ncdc_datasets, 58 gefs_dimension_values(), 72
ncdc_datatypes, 60 gefs_dimensions(), 72
ncdc_locs, 63 gefs_ensembles(), 72
ncdc_locs_cats, 65 gefs_latitudes(), 72
ncdc_plot, 67 gefs_longitudes(), 72
ncdc_stations, 68 gefs_times(), 72
x package gefs_variables(), 72
rnoaa-package, 3 ghend, 17, 47
ghend(), 21, 22
arc2,5 ghcnd_cache, 18
arc2_cache, 5 ghcnd_cache (rnoaa_caching), 72
arc2_cache (rnoaa_caching), 72 ghcnd_countries (ghcnd_states), 22
autoplot_meteo_coverage, 6 ghend_read (ghend), 17
ghcnd_search, 19
bsw, 7 ghend_search(), 18, 21, 49
bsw_cache, 8 ghend_splitvars, 21
bsw_cache (rnoaa_caching), 72 ghcnd_states, 22
buoy, 8 ghcnd_stations, 23
buoy_stations (buoy), 8 ghend_stations(), 17, 20, 38, 39, 41-43, 47
buoys (buoy), 8 ghend_version (ghcnd_states), 22
coops, 10 homr, 24
coops_search (coops), 10 homr_definitions, 26
cpc_cache, 15 homr_definitions(), 26
cpc_cache (rnoaa_caching), 72 HttpClient, 51, 57, 59,61, 63, 65, 69

83

84

isd, 27, 31, 32, 34

isd(), 31

isd_cache, 28, 32

isd_cache (rnoaa_caching), 72
isd_read, 29, 30, 32, 34
isd_stations, 29, 31, 31, 34
isd_stations(), 31, 33
isd_stations_search, 29, 31, 32, 33
isd_stations_search(), 31
isdparser::isd_parse(), 28, 30
isdparser::isd_transform(), 28

jsonlite::fromJSON(), 52

lapply (), 73

lcd, 34

lcd_cache, 35

lcd_cache (rnoaa_caching), 72
lcd_columns, 35

meteo_clear_cache, 36, 45
meteo_coverage, 36
meteo_coverage(), 6
meteo_distance, 37
meteo_distance(), 33
meteo_nearby_stations, 39
meteo_nearby_stations(), 17, 20, 38, 40,
42, 43,47
meteo_process_geographic_data, 41
meteo_pull_monitors, 43
meteo_pull_monitors(), I8, 21, 39,41, 48
meteo_show_cache, 36, 45
meteo_spherical_distance, 46
meteo_tidy_ghcnd, 47
meteo_tidy_ghend(), 18, 21, 41
meteo_tidy_ghcnd_element, 49

ncdc, 50, 55, 57, 60, 62, 64, 66, 67, 70

ncdc(), 67, 72

ncdc_combine, 52, 54, 57, 60, 62, 64, 66, 67,
70

ncdc_combine(), 72

ncdc_datacats, 52, 55, 56, 60, 62, 64, 66, 67,
70

ncdc_datacats(), 72

ncdc_datasets, 50, 52, 55, 57, 58, 62, 64, 66,
67,70

ncdc_datasets(), 72

ncdc_datatypes, 52, 55, 57, 60, 60, 64, 66,
67,70

INDEX

ncdc_datatypes(), 72

ncdc_locs, 52, 55, 57, 60, 62, 63, 66, 67, 70

ncdc_locs(), 72

ncdc_locs_cats, 52, 55, 57, 60, 62, 64, 65,
67,70

ncdc_locs_cats(), 72

ncdc_plot, 52, 55, 57, 60, 62, 64, 66, 67, 70

ncdc_plot(), 72

ncdc_stations, 52, 55, 57, 60, 62, 64, 66, 67,
68

ncdc_stations(), 72

rnoaa (rnoaa-package), 3
rnoaa-defunct, 71
rnoaa-package, 3
rnoaa_caching, 72,72, 74
rnoaa_options, 74
rnoaa_options(), 73

se_data (storm_events), 77
se_files (storm_events), 77
sea_ice, 74

sea_ice(), 72,76
sea_ice_tabular, 76
sea_ice_tabular(), 75
Startup, 51, 57, 59, 62, 64, 66, 69
storm_events, 77
stormevents_cache, 77
stormevents_cache (rnoaa_caching), 72
swdi, 78

system.file(), 52

torn_cache, 81
torn_cache (rnoaa_caching), 72
tornadoes, 81

vis_miss, 82

	rnoaa-package
	arc2
	autoplot_meteo_coverage
	bsw
	buoy
	coops
	cpc_prcp
	ersst
	fipscodes
	ghcnd
	ghcnd_search
	ghcnd_splitvars
	ghcnd_states
	ghcnd_stations
	homr
	homr_definitions
	isd
	isd_read
	isd_stations
	isd_stations_search
	lcd
	meteo_clear_cache
	meteo_coverage
	meteo_distance
	meteo_nearby_stations
	meteo_process_geographic_data
	meteo_pull_monitors
	meteo_show_cache
	meteo_spherical_distance
	meteo_tidy_ghcnd
	meteo_tidy_ghcnd_element
	ncdc
	ncdc_combine
	ncdc_datacats
	ncdc_datasets
	ncdc_datatypes
	ncdc_locs
	ncdc_locs_cats
	ncdc_plot
	ncdc_stations
	rnoaa-defunct
	rnoaa_caching
	rnoaa_options
	sea_ice
	sea_ice_tabular
	storm_events
	swdi
	tornadoes
	vis_miss
	Index

