Package: slopes (via r-universe)

July 17, 2024
Title Calculate Slopes of Roads, Rivers and Trajectories

Version 1.0.1

Description Functions and example data to support research into the slope (also known as longitudinal gradient or steepness) of linear geographic entities such as roads doi:10.1038/s41597-019-0147-x and rivers doi:10.1016/j.jhydrol.2018.06.066. The package was initially developed to calculate the steepness of street segments but can be used to calculate steepness of any linear feature that can be represented as LINESTRING geometries in the 'sf' class system. The package takes two main types of input data for slope calculation: vector geographic objects representing linear features, and raster geographic objects with elevation values (which can be downloaded using functionality in the package) representing a continuous terrain surface. Where no raster object is provided the package attempts to download elevation data using the 'ceramic' package.

License GPL-3
URL https://github.com/ropensci/slopes/, https://docs.ropensci.org/slopes/

BugReports https://github.com/ropensci/slopes/issues
Encoding UTF-8
LazyData true
Roxygen list(markdown $=$ TRUE $)$
RoxygenNote 7.1.2
Imports sf, raster, methods, pbapply, geodist, colorspace
Depends R (>= 2.10)
Suggests terra, knitr, rmarkdown, ceramic, bookdown, covr, testthat, osmextract, stplanr, dplyr, rgdal, tmap, leaflet, bench

VignetteBuilder knitr
Config/testthat/edition 3
Repository https://ropensci.r-universe.dev
RemoteUrl https://github.com/ropensci/slopes
RemoteRef master
RemoteSha c45cf51b5ff44821bc188c6fdb55f04c7c82cd26
Contents
cyclestreets_route 2
dem_lisbon_raster 3
elevation_add 4
elevation_extract 5
elevation_get 6
lisbon_road_network 7
lisbon_road_segment 8
lisbon_route 9
magnolia_xy 9
plot_dz 10
plot_slope 11
sequential_dist 13
slope_matrix 13
slope_raster 15
slope_vector 16
slope_xyz 17
z_value 18
Index 20
cyclestreets_route A journey from CycleStreets.net

Description

Road segments representing suggested route to cycle in Leeds, UK.

Usage

cyclestreets_route

Format

An object of class sf with 18 rows and 14 columns on route characteristics. See https://rpackage.cyclestreets.net/reference/jou for details.

Details

Simple feature collection with 30 features and 32 fields
See data-raw/cyclestreets_route. R in the package's github repo for details.

Source

CycleStreets.net

Examples

```
library(sf)
class(cyclestreets_route)
plot(cyclestreets_route$geometry)
cyclestreets_route
```

dem_lisbon_raster Elevation in central Lisbon, Portugal

Description

A dataset containing elevation in and around Lisbon with a geographic resolution of 10 m . The dataset is 200 pixels wide by 133 pixels high, covering 2.7 square kilometres of central Lisbon.

Usage

dem_lisbon_raster

Format

A raster dataset containing elevation above sea level in a 1 km bounding box in Lisbon, Portugal.

Details

The dataset was acquired by Instituto Superior Técnico (University of Lisbon) in 2012, covers all the Northern Metropolitan Area of Lisbon, and has a 10 m cell resolution, when projected at the official Portuguese EPSG: 3763 - TM06/ETRS89. The dataset was released as an open access dataset with permission from the University of Lisbon to support this project.

Source

https://github.com/rspatial/terra/issues/29

Examples

```
library(sf)
library(raster)
dim(dem_lisbon_raster)
res(dem_lisbon_raster)
names(dem_lisbon_raster)
plot(dem_lisbon_raster)
plot(lisbon_road_network["Avg_Slope"], add = TRUE)
```


Description

Take a linestring and add a third (z) dimension to its coordinates

Usage

```
    elevation_add(
        routes,
        dem = NULL,
        method = "bilinear",
        terra = has_terra() && methods::is(dem, "SpatRaster")
    )
```


Arguments

routes Routes, the gradients of which are to be calculated. The object must be of class sf or sfc with LINESTRING geometries.
dem Raster overlapping with routes and values representing elevations
method The method of estimating elevation at points, passed to the extract function for extracting values from raster datasets. Default: "bilinear".
terra Should the terra package be used? TRUE by default if the package is installed and if dem is of class SpatRast

Value

An sf object that is identical to the input routes, except that the coordinate values in the ouput has a third z dimension representing the elevation of each vertex that defines a linear feature such as a road.

Examples

```
library(sf)
routes = lisbon_road_network[204, ]
dem = dem_lisbon_raster
(r3d = elevation_add(routes, dem))
library(sf)
st_z_range(routes)
st_z_range(r3d)
plot(st_coordinates(r3d)[, 3])
plot_slope(r3d)
# Get elevation data (requires internet connection and API key):
r3d_get = elevation_add(cyclestreets_route)
plot_slope(r3d_get)
```


Description

This function takes a series of points located in geographical space and a digital elevation model as inputs and returns a vector of elevation estimates associated with each point. The function takes locations represented as a matrix of XY (or longitude latitude) coordinates and a digital elevation model (DEM) with class raster or terra. It returns a vector of values representing estimates of elevation associated with each of the points.

Usage

```
    elevation_extract(
        m,
        dem,
        method = "bilinear",
        terra = has_terra() && methods::is(dem, "SpatRaster")
    )
```


Arguments

m Matrix containing coordinates and elevations or an sf object representing a linear feature.
dem Raster overlapping with routes and values representing elevations
method The method of estimating elevation at points, passed to the extract function for extracting values from raster datasets. Default: "bilinear".
terra \quad Should the terra package be used? TRUE by default if the package is installed and if dem is of class SpatRast

Details

By default, the elevations are estimated using bilinear interpolation (method = "bilinear") which calculates point height based on proximity to the centroids of surrounding cells. The value of the method argument is passed to the method argument in raster: :extract() or terra: :extract() depending on the class of the input raster dataset.
See Kidner et al. (1999) for descriptions of alternative elevation interpolation and extrapolation algorithms.

Value

A vector of elevation values.

References

Kidner, David, Mark Dorey, and Derek Smith. "What's the point? Interpolation and extrapolation with a regular grid DEM." Fourth International Conference on GeoComputation, Fredericksburg, VA, USA. 1999.

Examples

```
dem = dem_lisbon_raster
elevation_extract(lisbon_road_network[1, ], dem)
m = sf::st_coordinates(lisbon_road_network[1, ])
elevation_extract(m, dem)
elevation_extract(m, dem, method = "simple")
# Test with terra (requires internet connection):
if(slopes:::has_terra()) {
et = terra::rast(dem_lisbon_raster)
elevation_extract(m, et)
}
```

elevation_get Get elevation data from hosted maptile services

Description

elevation_get() uses the cc_elevation() function from the ceramic package to get DEM data in raster format anywhere worldwide. It requires an API that can be added by following guidance in the package's README and in the slopes vignette.

Usage

elevation_get(routes, ..., output_format = "raster")

Arguments

routes	Routes, the gradients of which are to be calculated. The object must be of class sf or sfc with LINESTRING geometries.
\ldots	Options passed to cc_elevation()
output_format	What format to return the data in? Accepts "raster" (the default) and "terra".

Details

Note: if you use the cc_elevation() function directly to get DEM data, you can cache the data, as described in the package's README.

Value

A raster object with cell values representing elevations in the bounding box of the input routes object.

Examples

\# Time-consuming examples that require an internet connection and API key:
library(sf)
library (raster)
routes = cyclestreets_route
e = elevation_get(routes)
class(e)
crs(e)
e
plot(e)
plot(st_geometry(routes), add = TRUE)
lisbon_road_network Road segments in Lisbon

Description

A dataset representing road segments in Lisbon, with X, Y and Z (elevation) dimensions for each coordinate.

Usage

lisbon_road_network

Format

An object of class sf, key variables of which include
OBJECTID ID of the object
Z_Min The minimum elevation on the linear feature from ArcMAP
Z_Max The max elevation on the linear feature from ArcMAP
\mathbf{Z}_{-}Mean The mean elevation on the linear feature from ArcMAP
Slope_Min The minimum slope on the linear feature from ArcMAP
Slope_Max The max slope on the linear feature from ArcMAP
Slope_Mean The mean slope on the linear feature from ArcMAP
geom The geometry defining the LINESTRING component of the segment

Details

The dataset covers 32 km of roads in central Lisbon, overlapping with the area covered by the dem_lisbon_raster dataset.

Source

Produced by ESRI's 3D Analyst extension

Examples

```
library(sf)
names(lisbon_road_network)
sum(st_length(lisbon_road_network))
plot(lisbon_road_network["Avg_Slope"])
```

lisbon_road_segment A road segment in Lisbon, Portugal

Description

A single road segment and a 3d version. Different versions of this dataset are provided.

Usage

lisbon_road_segment

Format

An object of class sf

Details

The lisbon_road_segment has 23 columns and 1 row.
The lisbon_road_segment_xyz_mapbox was created with: lisbon_road_segment_xyz_mapbox = elevation_add(lisbon_road_segment).

Source

Produced by ESRI's 3D Analyst extension

Examples

```
lisbon_road_segment
lisbon_road_segment_3d
lisbon_road_segment_xyz_mapbox
```


Description

A route representing a trip from the Santa Catarina area in the East of central Lisbon the map to the Castelo de São Jorge in the West of central Lisbon.

Usage

lisbon_route

Format

An object of class sf

Details

Different versions of this dataset are provided.
The lisbon_route object has 1 row and 4 columns: geometry, ID, length and whether or not a path was found.

The lisbon_route_xyz_mapbox was created with: lisbon_route_xyz_mapbox = elevation_add(lisbon_route).

Source

See the lisbon_route.R script in data-raw

Examples

```
lisbon_route
lisbon_route_3d
lisbon_route_xyz_mapbox
```

 magnolia_xy

Description

A dataset representing road segments in the Magnolia area of Seattle with X, Y and Z (elevation) dimensions for each coordinate.

Usage

magnolia_xy

Format

An object of class sf

Source

Accessed in early 2021 from the seattle-streets layer from the data-seattlecitygis website.

Examples

```
names(magnolia_xy)
plot(magnolia_xy["SLOPE_PCT"])
```

```
    plot_dz Plot a digital elevation profile based on xyz data
```


Description

Plot a digital elevation profile based on xyz data

Usage

plot_dz(

```
        d,
```

 z,
 fill = TRUE,
 horiz = FALSE,
 pal = colorspace::diverging_hcl,
 ...,
 legend_position = "top",
 col = "black",
 cex \(=0.9\),
 bg = grDevices: : \(\operatorname{rgb}(1,1,1,0.8)\),
 title = "Slope colors (percentage gradient)",
 brks = NULL,
 seq_brks = NULL,
 ncol \(=4\)
)

Arguments

d
z
fill
horiz
pal Color palette to use, colorspace: :diverging_hcl by default.
... Additional parameters to pass to legend
legend_position
The legend position. One of "bottomright", "bottom", "bottomleft", "left", "topleft", "top" (the default), "topright", "right" and "center".
col Line colour, black by default
cex Legend size, 0.9 by default
bg Legend background colour, grDevices: $\operatorname{rgb}(1,1,1,0.8)$ by default.
title Title of the legend, NULL by default.
brks Breaks in colour palette to show. $c(1,3,6,10,20,40,100)$ by default.
seq_brks Sequence of breaks to show in legend. Includes negative numbers and omits zero by default
ncol Number of columns in legend, 4 by default.

Value

A plot showing the elevation profile associated with a linestring.

Examples

```
library(sf)
route_xyz = lisbon_road_segment_3d
m = st_coordinates(route_xyz)
d = cumsum(sequential_dist(m, lonlat = FALSE))
d = c(0, d)
z = m[, 3]
slopes:::plot_dz(d, z, brks = c(3, 6, 10, 20, 40, 100))
```

```
plot_slope
```


Description

Plot slope data for a 3d linestring with base R graphics

Usage

```
plot_slope(
    route_xyz,
    lonlat = sf::st_is_longlat(route_xyz),
    fill = TRUE,
    horiz = FALSE,
    pal = colorspace::diverging_hcl,
    legend_position = "top",
    col = "black",
    cex = 0.9,
    bg = grDevices::rgb(1, 1, 1, 0.8),
    title = "Slope colors (percentage gradient)",
```

```
    brks = c(3, 6, 10, 20, 40, 100),
    seq_brks = seq(from = 3, to = length(brks) * 2 - 2),
    ncol = 4,
)
```


Arguments

route_xyz	An sf linestring with x, y and z coordinates, representing a route or other linear object.
lonlat	Are the routes provided in longitude/latitude coordinates? By default, value is from the CRS of the routes (sf::st_is_longlat(routes)).
fill	Should the profile be filled? TRUE by default
horiz	Should the legend be horizontal (FALSE by default)
pal	Color palette to use, colorspace: : diverging_hcl by default.
legend_position	
	The legend position. One of "bottomright", "bottom", "bottomleft", "left", "topleft", "top" (the default), "topright", "right" and "center".
col	Line colour, black by default
cex	Legend size, 0.9 by default
bg	Legend background colour, grDevices: : $\mathrm{rgb}(1,1,1,0.8$) by default.
title	Title of the legend, NULL by default.
brks	Breaks in colour palette to show. $\mathrm{c}(1,3,6,10,20,40,100)$ by default.
seq_brks	Sequence of breaks to show in legend. Includes negative numbers and omits zero by default
ncol	Number of columns in legend, 4 by default.
	Additional parameters to pass to legend

Value

A plot showing the elevation profile associated with a linestring.

Examples

```
plot_slope(lisbon_route_3d)
route_xyz = lisbon_road_segment_3d
plot_slope(route_xyz)
plot_slope(route_xyz, brks = c(1, 2, 4, 8, 16, 30))
plot_slope(route_xyz, s = 5:8)
```

```
sequential_dist
Calculate the sequential distances between sequential coordinate pairs
```


Description

Set lonlat to FALSE if you have projected data, e.g. with coordinates representing distance in meters, not degrees. Lonlat coodinates are assumed (lonlat = TRUE is the default).

Usage

sequential_dist(m, lonlat $=$ TRUE)

Arguments

m
Matrix containing coordinates and elevations. The matrix should have three columns: x, y, and z, in that order. Typically these correspond to location in the West-East, South-North, and vertical elevation axes respectively. In data with geographic coordinates, Z values are assumed to be in metres. In data with projected coordinates, Z values are assumed to have the same units as the X and Y coordinates.
lonlat Are the coordinates in lon/lat (geographic) coordinates? TRUE by default.

Value

A vector of distance values in meters if lonlat = TRUE or the map units of the input data if lonlat = FALSE between consecutive vertices.

Examples

```
\(x=c(0,2,3,4,5,9)\)
\(y=c(0,0,0,0,0,1)\)
\(\mathrm{m}=\operatorname{cbind}(\mathrm{x}, \mathrm{y})\)
d = sequential_dist(m, lonlat = FALSE)
d
nrow(m)
length(d)
```

```
slope_matrix
```

Calculate the gradient of line segments from a $3 D$ matrix of coordinates

Description

Calculate the gradient of line segments from a 3D matrix of coordinates

Usage

```
slope_matrix(m, elevations = m[, 3], lonlat = TRUE)
slope_matrix_mean(m, elevations = m[, 3], lonlat = TRUE, directed = FALSE)
slope_matrix_weighted(m, elevations = m[, 3], lonlat = TRUE, directed = FALSE)
```


Arguments

m
Matrix containing coordinates and elevations. The matrix should have three columns: x, y, and z, in that order. Typically these correspond to location in the West-East, South-North, and vertical elevation axes respectively. In data with geographic coordinates, Z values are assumed to be in metres. In data with projected coordinates, Z values are assumed to have the same units as the X and Y coordinates.
elevations Elevations in same units as x (assumed to be metres). Default value: m[, 3], meaning the ' z ' coordinate in a matrix of coordinates.
lonlat Are the coordinates in lon/lat (geographic) coordinates? TRUE by default.
directed Should the value be directed? FALSE by default. If TRUE the result will be negative when it represents a downslope (when the end point is lower than the start point).

Value

A vector of slope gradients associated with each linear element (each line between consecutive vertices) associated with linear features. Returned values for slope_matrix_mean() and slope_matrix_weighted() are summary statistics for all linear elements in the linestring. The output value is a proportion representing the change in elevation for a given change in horizontal movement along the linestring. 0.02 , for example, represents a low gradient of 2% while 0.08 represents a steep gradient of 8%.

Examples

```
\(x=c(0,2,3,4,5,9)\)
\(y=c(0,0,0,0,0,9)\)
\(z=c(1,2,2,4,3,0) / 10\)
m = cbind(x, y, z)
slope_matrix_weighted(m, lonlat = FALSE)
slope_matrix_weighted(m, lonlat \(=\) FALSE, directed \(=\) TRUE)
\# 0 value returned if no change in elevation:
slope_matrix_weighted(m,lonlat = FALSE, directed = TRUE,
    elevations = c(1, 2, 2, 4, 3, 1))
slope_matrix_mean (m, lonlat \(=\) FALSE \()\)
slope_matrix_mean(m, lonlat = FALSE, directed = TRUE)
plot(x, z, ylim = c(-0.5, 0.5), type = "l")
(gx = slope_vector(x, z))
\((\mathrm{gxy}=\) slope_matrix(m, lonlat \(=\) FALSE \()\) )
abline(h = 0, lty = 2)
points(x[-length(x)], gx, col = "red")
points(x[-length(x)], gxy, col = "blue")
```

```
title("Distance (in x coordinates) elevation profile",
    sub = "Points show calculated gradients of subsequent lines")
```

slope_raster

Calculate the gradient of line segments from a raster dataset

Description

This function takes an sf representing routes over geographical space and a raster dataset representing the terrain as inputs. It returns the average gradient of each route feature.

Usage

slope_raster(
routes,
dem,
lonlat = sf::st_is_longlat(routes),
method = "bilinear",
fun = slope_matrix_weighted,
terra = has_terra() \&\& methods::is(dem, "SpatRaster"),
directed = FALSE
)

Arguments

routes Routes, the gradients of which are to be calculated. The object must be of class sf or sfc with LINESTRING geometries.
dem Raster overlapping with routes and values representing elevations
lonlat Are the routes provided in longitude/latitude coordinates? By default, value is from the CRS of the routes (sf::st_is_longlat(routes)).
method The method of estimating elevation at points, passed to the extract function for extracting values from raster datasets. Default: "bilinear".
fun The slope function to calculate per route, slope_matrix_weighted by default.
terra Should the terra package be used? TRUE by default if the package is installed and if dem is of class SpatRast
directed Should the value be directed? FALSE by default. If TRUE the result will be negative when it represents a downslope (when the end point is lower than the start point).

Details

If calculating slopes associated with OSM data, the results may be better if the network is first split-up, e.g. using the function stplanr::rnet_breakup_vertices() from the stplanr package. Note: The routes object must have a geometry type of LINESTRING. The sf::st_cast() function can convert from MULTILINESTRING (and other) geometries to LINESTRINGs as follows: r_linestring = sf::st_cast(routes, "LINESTRING").

Value

A vector of slopes equal in length to the number simple features (rows representing linestrings) in the input object.

Examples

```
library(sf)
routes = lisbon_road_network[1:3, ]
dem = dem_lisbon_raster
(s = slope_raster(routes, dem))
cor(routes$Avg_Slope, s)
slope_raster(routes, dem, directed = TRUE)
# Demonstrate that reverse routes have the opposite directed slope
slope_raster(st_reverse(routes), dem, directed = TRUE)
```

slope_vector

Calculate the gradient of line segments from distance and elevation vectors

Description

slope_vector () calculates the slopes associated with consecutive elements in one dimensional distance and associated elevations (see examples).
slope_distance() calculates the slopes associated with consecutive distances and elevations.
slope_distance_mean() calculates the mean average slopes associated with consecutive distances and elevations.
slope_distance_weighted() calculates the slopes associated with consecutive distances and elevations, with the mean value associated with each set of distance/elevation vectors weighted in proportion to the distance between each elevation measurement, so longer sections have proportionally more influence on the resulting gradient estimate (see examples).

Usage

slope_vector(x, elevations)
slope_distance(d, elevations)
slope_distance_mean(d, elevations, directed = FALSE)
slope_distance_weighted(d, elevations, directed = FALSE)

Arguments

x	Vector of locations
elevations	Elevations in same units as x (assumed to be metres)
d	Vector of distances between points

directed Should the value be directed? FALSE by default. If TRUE the result will be negative when it represents a downslope (when the end point is lower than the start point).

Value

A vector of slope gradients associated with each linear element (each line between consecutive vertices) associated with linear features. Returned values for slope_distance_mean() and slope_distance_mean_weighted(are summary statistics for all linear elements in the linestring. The output value is a proportion representing the change in elevation for a given change in horizontal movement along the linestring. 0.02 , for example, represents a low gradient of 2% while 0.08 represents a steep gradient of 8%.

Examples

```
x = c(0, 2, 3, 4, 5, 9)
elevations = c(1, 2, 2, 4, 3, 0) / 10 # downward slope overall
slope_vector(x, elevations)
library(sf)
m = st_coordinates(lisbon_road_segment)
d = sequential_dist(m, lonlat = FALSE)
elevations = elevation_extract(m, dem_lisbon_raster)
slope_distance(d, elevations)
slope_distance_mean(d, elevations)
slope_distance_mean(d, elevations, directed = TRUE)
slope_distance_mean(rev(d), rev(elevations), directed = TRUE)
slope_distance_weighted(d, elevations)
slope_distance_weighted(d, elevations, directed = TRUE)
```


Description

The function takes a sf object with 'XYZ' coordinates and returns a vector of numeric values representing the average slope of each linestring in the sf data frame input.

Usage

```
slope_xyz(
    route_xyz,
    fun = slope_matrix_weighted,
    lonlat = TRUE,
    directed = FALSE
)
```


Arguments

route_xyz An sf or sfc object with XYZ coordinate dimensions
fun The slope function to calculate per route, slope_matrix_weighted by default.
lonlat Are the coordinates in lon/lat order? TRUE by default
directed Should the value be directed? FALSE by default. If TRUE the result will be negative when it represents a downslope (when the end point is lower than the start point).

Details

The default function to calculate the mean slope is slope_matrix_weighted(). You can also use slope_matrix_mean() from the package or any other function that takes the same inputs as these functions not in the package.

Value

A vector of slopes equal in length to the number simple features (rows representing linestrings) in the input object.

Examples

```
route_xyz = lisbon_road_segment_3d
slope_xyz(route_xyz, lonlat = FALSE)
slope_xyz(route_xyz$geom, lonlat = FALSE)
slope_xyz(route_xyz, lonlat = FALSE, directed = TRUE)
slope_xyz(route_xyz, lonlat = FALSE, fun = slope_matrix_mean)
```

```
z_value Calculate summary values for 'Z' elevation attributes
```


Description

The slope_z*() functions calculate summary values for the Z axis in sfc objects with XYZ geometries.

Usage

z_value(x)
z_start(x)
z_end(x)
z_mean(x)
z_max (x)

```
z_min(x)
    z_elevation_change_start_end(x)
    z_direction(x)
    z_cumulative_difference(x)
```


Arguments

x
An sfc object with 'XYZ' coordinates

Value

A vector of values representing elevations associated with simple feature geometries that have elevations (XYZ coordinates).

Examples

```
x = slopes::lisbon_route_3d
x
z_value(x)[1:5]
xy = slopes::lisbon_route
try(z_value(xy)) # error message
z_start(x)
z_end(x)
z_direction(x)
z_elevation_change_start_end(x)
z_direction(x)
z_cumulative_difference(x)
```


Index

```
* datasets
    cyclestreets_route, 2
    dem_lisbon_raster,3
    lisbon_road_network,7
    lisbon_road_segment,8
    lisbon_route, }
    magnolia_xy, 9
cyclestreets_route, 2
dem_lisbon_raster, 3
elevation_add,4
elevation_extract,5
elevation_get,6
lisbon_road_network, 7
lisbon_road_segment, 8
lisbon_road_segment_3d
    (lisbon_road_segment), 8
lisbon_road_segment_xyz_mapbox
    (lisbon_road_segment), 8
lisbon_route, }
lisbon_route_3d (lisbon_route), 9
lisbon_route_xyz_mapbox(lisbon_route),
        9
magnolia_xy, 9
plot_dz,10
plot_slope,11
sequential_dist, 13
slope_distance (slope_vector), 16
slope_distance_mean(slope_vector), 16
slope_distance_weighted (slope_vector),
    16
slope_matrix, 13
slope_matrix_mean(slope_matrix), 13
slope_matrix_weighted (slope_matrix), 13
slope_raster, 15
```

slope_vector, 16
slope_xyz, 17
z_cumulative_difference (z_value), 18
z_direction (z_value), 18
z_elevation_change_start_end (z_value), 18
z_end (z_value), 18
z_max (z_value), 18
z_mean (z_value), 18
z_min (z_value), 18
z_start (z_value), 18
z_value, 18

