--- title: "Additional data formats" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Additional data formats} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ```{r setup} library(spatsoc) library(data.table) ``` ```{r, echo = FALSE, eval = TRUE} data.table::setDTthreads(1) ``` ## Multispecies interactions Multispecies data can be used with `spatsoc` to estimate interspecific interactions, eg. predator-prey dyanmics. Given two datasets of movement data, simply bind them together and use the `group_*` functions as usual. ```{r} predator <- fread(system.file("extdata", "DT_predator.csv", package = "spatsoc")) prey <- fread(system.file("extdata", "DT_prey.csv", package = "spatsoc")) DT <- rbindlist(list(predator, prey)) # Set the datetime as a POSIxct DT[, datetime := as.POSIXct(datetime)] # Temporal grouping group_times(DT, datetime = 'datetime', threshold = '10 minutes') # Spatial grouping group_pts(DT, threshold = 50, id = 'ID', coords = c('X', 'Y'), timegroup = 'timegroup') # Calculate the number of types within each group DT[, n_type := uniqueN(type), by = group] DT[, interact := n_type > 1] # Prey's perspective sub_prey <- DT[type == 'prey'] sub_prey[, mean(interact)] # Plot -------------------------------------------------------------------- # If we subset only where there are interactions sub_interact <- DT[(interact)] # Base R plot plot(sub_prey$X, sub_prey$Y, col = 'grey', pch = 21) points(sub_interact$X, sub_interact$Y, col = factor(sub_interact$type)) ```