Title: | An API Client for Australian Weather and Climate Data Resources |
---|---|
Description: | Provides automated downloading, parsing and formatting of weather data for Australia through API endpoints provided by the Department of Primary Industries and Regional Development ('DPIRD') of Western Australia and by the Science and Technology Division of the Queensland Government's Department of Environment and Science ('DES'). As well as the Bureau of Meteorology ('BOM') of the Australian government precis and coastal forecasts, agriculture bulletin data, and downloading and importing radar and satellite imagery files. 'DPIRD' weather data are accessed through public 'APIs' provided by 'DPIRD', <https://www.agric.wa.gov.au/weather-api-20>, providing access to weather station data from the 'DPIRD' weather station network. Australia-wide weather data are based on data from the Australian Bureau of Meteorology ('BOM') data and accessed through 'SILO' (Scientific Information for Land Owners) Jeffrey et al. (2001) <doi:10.1016/S1364-8152(01)00008-1>. 'DPIRD' data are made available under a Creative Commons Attribution 3.0 Licence (CC BY 3.0 AU) license <https://creativecommons.org/licenses/by/3.0/au/deed.en>. SILO data are released under a Creative Commons Attribution 4.0 International licence (CC BY 4.0) <https://creativecommons.org/licenses/by/4.0/>. 'BOM' data are (c) Australian Government Bureau of Meteorology and released under a Creative Commons (CC) Attribution 3.0 licence or Public Access Licence ('PAL') as appropriate, see <http://www.bom.gov.au/other/copyright.shtml> for further details. |
Authors: | Rodrigo Pires [aut, cre] , Anna Hepworth [aut] , Rebecca O'Leary [aut], Jonathan Carroll [aut] , James Goldie [aut] , Dean Marchiori [aut] , Paul Melloy [aut] , Mark Padgham [aut] , Hugh Parsonage [aut] , Keith Pembleton [ctb] (<https://orcid.org/0000-0002-1896-4516>, Contributed code and ideas for original 'bomrang' package that was used in the creation of 'weatherOz'.), Maëlle Salmon [ctb] (<https://orcid.org/0000-0002-2815-0399>, Contributed to debugging a nasty little bug with CI where timezones caused tests to fail due to 'vcr' not recognising the URL when run outside of Australia/Perth TZ! Suggested the use of `withr::local_timzeone()`, see <https://github.com/ropensci/weatherOz/commit/b052bf91973b8d7e147a39e8938405a64622634b>.), Max Moldovan [ctb] (<https://orcid.org/0000-0001-9680-8474>, Contributed valuable feedback on package usage leading to improvements in the package structure and functionality.), Jimmy Ng [ctb], Steve Collins [ctb] (Designed the hex logo for 'weatherOz' hex logo.), Adam H. Sparks [aut] , Laurens Geffert [rev], Sam Rogers [rev], Western Australia Agriculture Authority (WAAA) [cph], Curtin University [cph] |
Maintainer: | Rodrigo Pires <[email protected]> |
License: | GPL (>= 3) |
Version: | 1.0.0.9000 |
Built: | 2024-11-17 01:27:47 UTC |
Source: | https://github.com/ropensci/weatherOz |
A vector object containing 57 items representing valid values to supply
to get_dpird_extremes()
's values argument taken from the
documentation for the DPIRD Weather 2.0 API.
dpird_extreme_weather_values
dpird_extreme_weather_values
A vector object of 57 items.
https://www.agric.wa.gov.au/weather-api-20
Other DPIRD:
dpird_minute_values
,
dpird_summary_values
,
find_nearby_stations()
,
find_stations_in()
,
get_dpird_apsim()
,
get_dpird_availability()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_stations_metadata()
Other data:
dpird_minute_values
,
dpird_summary_values
,
silo_daily_values
A vector object containing 12 items representing valid values to supply
to get_dpird_minute()
's values argument taken from the
documentation for the DPIRD Weather 2.0 API.
dpird_minute_values
dpird_minute_values
A vector object of 12 items.
https://www.agric.wa.gov.au/weather-api-20
Other DPIRD:
dpird_extreme_weather_values
,
dpird_summary_values
,
find_nearby_stations()
,
find_stations_in()
,
get_dpird_apsim()
,
get_dpird_availability()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_stations_metadata()
Other data:
dpird_extreme_weather_values
,
dpird_summary_values
,
silo_daily_values
A vector object containing 75 items representing valid values to supply
to get_dpird_summary()
's values argument taken from the
documentation for the DPIRD Weather 2.0 API.
dpird_summary_values
dpird_summary_values
A vector object of 75 items.
https://www.agric.wa.gov.au/weather-api-20
Other DPIRD:
dpird_extreme_weather_values
,
dpird_minute_values
,
find_nearby_stations()
,
find_stations_in()
,
get_dpird_apsim()
,
get_dpird_availability()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_stations_metadata()
Other data:
dpird_extreme_weather_values
,
dpird_minute_values
,
silo_daily_values
For a given latitude
and longitude
, find the nearest town that the
BOM provides a forecast for.
find_forecast_towns(longitude = 149.2, latitude = -35.3, distance_km = 100)
find_forecast_towns(longitude = 149.2, latitude = -35.3, distance_km = 100)
longitude |
A |
latitude |
A |
distance_km |
A |
A data.table::data.table()
of all forecast towns (in this package) sorted by
distance from latitude and longitude, ascending.
Hugh Parsonage, [email protected], and James Goldie, [email protected], and Adam H. Sparks, [email protected]
Other BOM:
get_ag_bulletin()
,
get_available_imagery()
,
get_available_radar()
,
get_coastal_forecast()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
,
parse_ag_bulletin()
,
parse_coastal_forecast()
,
parse_precis_forecast()
Other metadata:
find_nearby_stations()
,
find_stations_in()
,
get_available_imagery()
,
get_available_radar()
,
get_dpird_availability()
,
get_stations_metadata()
# find forecast towns near Esperance, WA find_forecast_towns(longitude = 121.8913, latitude = -33.8614)
# find forecast towns near Esperance, WA find_forecast_towns(longitude = 121.8913, latitude = -33.8614)
Find nearby weather stations given geographic coordinates or a station code for both of the DPIRD and SILO weather station networks. Either a combination of latitude and longitude or station_code must be provided. A DPIRD API key is only necessary to search for stations in the DPIRD network. If you are not interested in DPIRD stations in Western Australia, you may use this function to query only SILO stations for all of Australia without using a key.
find_nearby_stations( longitude = NULL, latitude = NULL, station_code = NULL, distance_km = 100, api_key = NULL, which_api = "silo", include_closed = FALSE )
find_nearby_stations( longitude = NULL, latitude = NULL, station_code = NULL, distance_km = 100, api_key = NULL, which_api = "silo", include_closed = FALSE )
longitude |
A |
latitude |
A |
station_code |
A |
distance_km |
A |
api_key |
A |
which_api |
A |
include_closed |
A |
A data.table::data.table()
with station_code
, station_name
,
latitude
, longitude
, elev_m
, state
, owner
, and distance
.
Data are sorted by increasing distance from station or location of
interest.
You can request your own API key from DPIRD for free by filling out the form found at https://www.agric.wa.gov.au/web-apis.
Rodrigo Pires, [email protected], and Adam H. Sparks, [email protected]
Other DPIRD:
dpird_extreme_weather_values
,
dpird_minute_values
,
dpird_summary_values
,
find_stations_in()
,
get_dpird_apsim()
,
get_dpird_availability()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_stations_metadata()
Other SILO:
find_stations_in()
,
get_data_drill()
,
get_data_drill_apsim()
,
get_patched_point()
,
get_patched_point_apsim()
,
get_stations_metadata()
,
silo_daily_values
Other metadata:
find_forecast_towns()
,
find_stations_in()
,
get_available_imagery()
,
get_available_radar()
,
get_dpird_availability()
,
get_stations_metadata()
## Not run: # Note that queries to the DPIRD API require you to have your own API key. # Query WA only stations and return DPIRD's stations nearest to the # Northam, WA station, "NO", returning stations with 50 km of this station wa_stn <- find_nearby_stations( station_code = "NO", distance_km = 50, api_key = "your_api_key", which_api = "dpird" ) # Query stations nearest DPIRD's Northam, WA station, "NO" and return both # DPIRD and SILO/BOM stations within 50 km of this station. wa_stn <- find_nearby_stations( station_code = "NO", distance_km = 50, api_key = "your_api_key", which_api = "all" ) # Query Wagga Wagga BOM station finding stations within 200 km of it, note # that it is not necessary to provide an `api_key` for SILO queries of # nearby stations. wagga_stn <- find_nearby_stations( latitude = -35.1583, longitude = 147.4575, distance_km = 200, which_api = "silo" ) ## End(Not run)
## Not run: # Note that queries to the DPIRD API require you to have your own API key. # Query WA only stations and return DPIRD's stations nearest to the # Northam, WA station, "NO", returning stations with 50 km of this station wa_stn <- find_nearby_stations( station_code = "NO", distance_km = 50, api_key = "your_api_key", which_api = "dpird" ) # Query stations nearest DPIRD's Northam, WA station, "NO" and return both # DPIRD and SILO/BOM stations within 50 km of this station. wa_stn <- find_nearby_stations( station_code = "NO", distance_km = 50, api_key = "your_api_key", which_api = "all" ) # Query Wagga Wagga BOM station finding stations within 200 km of it, note # that it is not necessary to provide an `api_key` for SILO queries of # nearby stations. wagga_stn <- find_nearby_stations( latitude = -35.1583, longitude = 147.4575, distance_km = 200, which_api = "silo" ) ## End(Not run)
Given an sf polygon or a bounding box as a vector with the minimum and maximum longitude and latitude values, find DPIRD or BOM stations in the SILO network that fall within that defined area or the station nearest the centroid of the area of interest.
find_stations_in( x, centroid = FALSE, api_key = NULL, which_api = "all", include_closed = FALSE, crs = "EPSG:7844" )
find_stations_in( x, centroid = FALSE, api_key = NULL, which_api = "all", include_closed = FALSE, crs = "EPSG:7844" )
x |
One of two types of object:
|
centroid |
|
api_key |
A |
which_api |
A |
include_closed |
A |
crs |
A |
a data.table object of weather station(s) within the defined area of interest in an unprojected format, EPSG:4326, WGS 84 – WGS84 - World Geodetic System 1984, used in GPS format.
Other DPIRD:
dpird_extreme_weather_values
,
dpird_minute_values
,
dpird_summary_values
,
find_nearby_stations()
,
get_dpird_apsim()
,
get_dpird_availability()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_stations_metadata()
Other SILO:
find_nearby_stations()
,
get_data_drill()
,
get_data_drill_apsim()
,
get_patched_point()
,
get_patched_point_apsim()
,
get_stations_metadata()
,
silo_daily_values
Other metadata:
find_forecast_towns()
,
find_nearby_stations()
,
get_available_imagery()
,
get_available_radar()
,
get_dpird_availability()
,
get_stations_metadata()
# using a (generous) bounding box for Melbourne, Vic using only the SILO API # for BOM stations, so no API key is needed. bbox <- find_stations_in( x = c(144.470215, -38.160476, 145.612793, -37.622934), which_api = "SILO", include_closed = TRUE ) bbox # Use the same bounding box but only find a single station nearest # the centroid using only the SILO API for BOM stations centroid <- find_stations_in( x = c(144.470215, -38.160476, 145.612793, -37.622934), which_api = "SILO", include_closed = TRUE, centroid = TRUE ) centroid # Use the `south_west_agricultural_region` data to fetch stations only in the # south-western portion of WA and plot it with {ggplot2} showing open/closed # stations just to be sure they're inside the area of interest. # As this is in WA, we can use the DPIRD network, so we need our API key. # Using the `south_west_agricultural_region` {sf} object provided. sw_wa <- find_stations_in( x = south_west_agricultural_region, api_key = "your_api_key", include_closed = TRUE ) sw_wa
# using a (generous) bounding box for Melbourne, Vic using only the SILO API # for BOM stations, so no API key is needed. bbox <- find_stations_in( x = c(144.470215, -38.160476, 145.612793, -37.622934), which_api = "SILO", include_closed = TRUE ) bbox # Use the same bounding box but only find a single station nearest # the centroid using only the SILO API for BOM stations centroid <- find_stations_in( x = c(144.470215, -38.160476, 145.612793, -37.622934), which_api = "SILO", include_closed = TRUE, centroid = TRUE ) centroid # Use the `south_west_agricultural_region` data to fetch stations only in the # south-western portion of WA and plot it with {ggplot2} showing open/closed # stations just to be sure they're inside the area of interest. # As this is in WA, we can use the DPIRD network, so we need our API key. # Using the `south_west_agricultural_region` {sf} object provided. sw_wa <- find_stations_in( x = south_west_agricultural_region, api_key = "your_api_key", include_closed = TRUE ) sw_wa
Fetch the BOM agricultural bulletin information for a specified station or stations.
get_ag_bulletin(state = "AUS")
get_ag_bulletin(state = "AUS")
state |
Australian state or territory as full name or postal code.
Fuzzy string matching via |
Allowed state and territory postal codes, only one state per request or all using 'AUS'.
Australia, returns forecast for all states, NT and ACT
Australian Capital Territory (will return NSW)
New South Wales
Northern Territory
Queensland
South Australia
Tasmania
Victoria
Western Australia
A data frame as a weatherOz_tbl
object (inherits and is fully compatible
with data.table::data.table()
) of Australia BOM
agricultural bulletin information.
Data and Information Use Please note the copyright notice and disclaimer, http://www.bom.gov.au/other/copyright.shtml related to the use of this information. Users of this information are deemed to have read and accepted the conditions described therein.
Adam H. Sparks, [email protected], and Paul Melloy, [email protected]
Agricultural observations are retrieved from the Australian Bureau of
Meteorology (BOM) Weather Data Services Agriculture Bulletins,
http://www.bom.gov.au/catalogue/observations/about-agricultural.shtml.
And also,
Australian Bureau of Meteorology (BOM)) Weather Data Services
Observation of Rainfall,
http://www.bom.gov.au/climate/how/observations/rain-measure.shtml.
Station location and other metadata are sourced from the Australian Bureau of
Meteorology (BOM) webpage, Bureau of Meteorology Site Numbers:
http://www.bom.gov.au/climate/cdo/about/site-num.shtml.
Other BOM:
find_forecast_towns()
,
get_available_imagery()
,
get_available_radar()
,
get_coastal_forecast()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
,
parse_ag_bulletin()
,
parse_coastal_forecast()
,
parse_precis_forecast()
Other data fetching:
get_coastal_forecast()
,
get_data_drill()
,
get_data_drill_apsim()
,
get_dpird_apsim()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_patched_point()
,
get_patched_point_apsim()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
get_ag_bulletin(state = "QLD")
get_ag_bulletin(state = "QLD")
Fetch a listing of BOM GeoTIFF satellite imagery from
ftp://ftp.bom.gov.au/anon/gen/gms/ to determine which files are
currently available for download. Files are available at ten minute update
frequency with a 24-hour delete time. It is useful to know the most recent
files available and then specify in the get_satellite_imagery()
function. Ported from bomrang.
get_available_imagery(product_id = "all")
get_available_imagery(product_id = "all")
product_id |
|
Valid BOM satellite Product IDs for GeoTIFF files include:
AHI cloud cover only 2km FD GEOS GIS
AHI IR (Ch13) greyscale 2km FD GEOS GIS
AHI VIS (Ch3) greyscale 2km FD GEOS GIS
AHI IR (Ch13) Zehr 2km FD GEOS GIS
AHI VIS (true colour) / IR (Ch13 greyscale) composite 1km FD GEOS GIS
AHI VIS (true colour) / IR (Ch13 greyscale) composite 2km FD GEOS GIS
AHI WV (Ch8) 2km FD GEOS GIS
AHI cloud cover only 2km AUS equirect. GIS
AHI IR (Ch13) greyscale 2km AUS equirect. GIS
AHI VIS (Ch3) greyscale 2km AUS equirect. GIS
AHI IR (Ch13) Zehr 2km AUS equirect. GIS
AHI VIS (true colour) / IR (Ch13 greyscale) composite 1km AUS equirect. GIS
AHI VIS (true colour) / IR (Ch13 greyscale) composite 2km AUS equirect. GIS
AHI WV (Ch8) 2km AUS equirect. GIS
AHI VIS (Ch3) greyscale 0.5km AUS equirect. GIS
A vector
of all available files for the requested Product ID(s).
Adam H. Sparks, [email protected]
Australian Bureau of Meteorology (BOM) high-definition satellite images http://www.bom.gov.au/australia/satellite/index.shtml
Other BOM:
find_forecast_towns()
,
get_ag_bulletin()
,
get_available_radar()
,
get_coastal_forecast()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
,
parse_ag_bulletin()
,
parse_coastal_forecast()
,
parse_precis_forecast()
Other metadata:
find_forecast_towns()
,
find_nearby_stations()
,
find_stations_in()
,
get_available_radar()
,
get_dpird_availability()
,
get_stations_metadata()
# Check availability of AHI VIS (true colour) / IR (Ch13 greyscale) composite # 1km FD GEOS GIS images imagery <- get_available_imagery(product_id = "IDE00425") imagery
# Check availability of AHI VIS (true colour) / IR (Ch13 greyscale) composite # 1km FD GEOS GIS images imagery <- get_available_imagery(product_id = "IDE00425") imagery
Fetch a listing of available BOM radar imagery from ftp://ftp.bom.gov.au/anon/gen/radar/ to determine which files are currently available for download. The files available are the most recent radar imagery for each location, which are updated approximately every 6 to 10 minutes by the BOM. Ported from bomrang.
get_available_radar(radar_id = "all")
get_available_radar(radar_id = "all")
radar_id |
|
Valid BOM radar ID for each location required.
A data.table::data.table()
of all selected radar locations with
location information and product_ids.
Dean Marchiori, [email protected], and Adam H. Sparks, [email protected]
Australian Bureau of Meteorology (BOM) radar image http://www.bom.gov.au/australia/radar/.
Other BOM:
find_forecast_towns()
,
get_ag_bulletin()
,
get_available_imagery()
,
get_coastal_forecast()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
,
parse_ag_bulletin()
,
parse_coastal_forecast()
,
parse_precis_forecast()
Other metadata:
find_forecast_towns()
,
find_nearby_stations()
,
find_stations_in()
,
get_available_imagery()
,
get_dpird_availability()
,
get_stations_metadata()
# Check availability radar imagery for Wollongong (radar_id = 3) imagery <- get_available_radar(radar_id = 3) imagery
# Check availability radar imagery for Wollongong (radar_id = 3) imagery <- get_available_radar(radar_id = 3) imagery
Fetch the BOM daily Coastal Waters Forecast for a specified state or region.
get_coastal_forecast(state = "AUS")
get_coastal_forecast(state = "AUS")
state |
Australian state or territory as full name or postal code.
Fuzzy string matching via |
Allowed state and territory postal codes, only one state per request or all using 'AUS':
Australia, returns forecast for all states, NT and ACT
Australian Capital Territory (will return NSW)
New South Wales
Northern Territory
Queensland
South Australia
Tasmania
Victoria
Western Australia
A data.table::data.table()
of an Australia BOM Coastal Waters
Forecast.
Dean Marchiori, [email protected], and Paul Melloy, [email protected]
Forecast data come from Australian Bureau of Meteorology (BOM) Weather Data
Services
http://www.bom.gov.au/catalogue/data-feeds.shtml.
And also,
Location data and other metadata come from the BOM anonymous
FTP server with spatial data
ftp://ftp.bom.gov.au/anon/home/adfd/spatial/, specifically the
DBF file portion of a shapefile,
ftp://ftp.bom.gov.au/anon/home/adfd/spatial/IDM00003.dbf.
Other BOM:
find_forecast_towns()
,
get_ag_bulletin()
,
get_available_imagery()
,
get_available_radar()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
,
parse_ag_bulletin()
,
parse_coastal_forecast()
,
parse_precis_forecast()
Other data fetching:
get_ag_bulletin()
,
get_data_drill()
,
get_data_drill_apsim()
,
get_dpird_apsim()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_patched_point()
,
get_patched_point_apsim()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
get_coastal_forecast(state = "NSW")
get_coastal_forecast(state = "NSW")
Fetch nicely formatted weather data from the SILO API of spatially interpolated weather data (DataDrill). The daily climate surfaces have been derived either by splining or kriging the observational data. The returned values contain “source” columns, which denote how the observations were derived. The grid spans 112° to 154°, -10° to -44° with resolution 0.05° latitude by 0.05° longitude (approximately 5 km × 5 km).
get_data_drill( longitude, latitude, start_date, end_date = Sys.Date(), values = "all", api_key = get_key(service = "SILO") )
get_data_drill( longitude, latitude, start_date, end_date = Sys.Date(), values = "all", api_key = get_key(service = "SILO") )
longitude |
A single |
latitude |
A single |
start_date |
A |
end_date |
A |
values |
A |
api_key |
A |
a data.table::data.table()
with the weather data queried with
the weather variables in alphabetical order. The first eight columns will
always be:
longitude
,
latitude
,
elev_m
(elevation in metres),
date
(ISO8601 format, YYYYMMDD),
year
,
month
,
day
,
extracted
(the date on which the query was made)
Column names are converted from the default returns of the API to be
snake_case formatted and where appropriate, the names of the values that
are analogous between SILO and DPIRD data are named
using the same name for ease of interoperability, e.g., using
rbind()
to create a data.table
that contains data from both APIs.
Which will return all of the following values
Rainfall
Maximum temperature
Minimum temperature
Vapour pressure
Vapour pressure deficit
Class A pan evaporation
Synthetic estimate1
Combination (synthetic estimate pre-1970, class A pan 1970 onwards)
Morton's shallow lake evaporation
Solar exposure, consisting of both direct and diffuse components
Relative humidity at the time of maximum temperature
Relative humidity at the time of minimum temperature
short crop
tall crop6
Morton's areal actual evapotranspiration
Morton's point potential evapotranspiration
Morton's wet-environment areal potential evapotranspiration over land
Mean sea level pressure
Solar radiation: total incoming downward shortwave radiation on a horizontal surface, derived from estimates of cloud oktas and sunshine duration3.
Relative humidity: calculated using the vapour pressure measured at 9am, and the saturation vapour pressure computed using either the maximum or minimum temperature6.
Evaporation and evapotranspiration: an overview of the variables provided by SILO is available here, https://data.longpaddock.qld.gov.au/static/publications/Evapotranspiration_overview.pdf.
Data codes Where possible (depending on the file format), the data are supplied with codes indicating how each datum was obtained.
Official observation as supplied by the Bureau of Meteorology
Deaccumulated rainfall (original observation was recorded over a period exceeding the standard 24 hour observation period)
Interpolated from daily observations for that date
Synthetic Class A pan evaporation, calculated from temperatures, radiation and vapour pressure
Interpolated from daily observations using an anomaly interpolation method
Interpolated from the long term averages of daily observations for that day of year
Rodrigo Pires, [email protected], and Adam H. Sparks, [email protected]
Rayner, D. (2005). Australian synthetic daily Class A pan evaporation. Technical Report December 2005, Queensland Department of Natural Resources and Mines, Indooroopilly, Qld., Australia, 40 pp.
Morton, F. I. (1983). Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology, Journal of Hydrology, Volume 66, 1-76.
Zajaczkowski, J., Wong, K., & Carter, J. (2013). Improved historical solar radiation gridded data for Australia, Environmental Modelling & Software, Volume 49, 64–77. DOI: doi:10.1016/j.envsoft.2013.06.013.
Food and Agriculture Organization of the United Nations, Irrigation and drainage paper 56: Crop evapotranspiration - Guidelines for computing crop water requirements, 1998.
ASCE’s Standardized Reference Evapotranspiration Equation, proceedings of the National Irrigation Symposium, Phoenix, Arizona, 2000.
For further details refer to Jeffrey, S.J., Carter, J.O., Moodie, K.B. and Beswick, A.R. (2001). Using spatial interpolation to construct a comprehensive archive of Australian climate data, Environmental Modelling and Software, Volume 16/4, 309-330. DOI: doi:10.1016/S1364-8152(01)00008-1.
Other SILO:
find_nearby_stations()
,
find_stations_in()
,
get_data_drill_apsim()
,
get_patched_point()
,
get_patched_point_apsim()
,
get_stations_metadata()
,
silo_daily_values
Other data fetching:
get_ag_bulletin()
,
get_coastal_forecast()
,
get_data_drill_apsim()
,
get_dpird_apsim()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_patched_point()
,
get_patched_point_apsim()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
## Not run: # requires an API key as your email address # Source data from latitude and longitude coordinates (gridded data) for # max and minimum temperature and rainfall for Southwood, QLD. wd <- get_data_drill( latitude = -27.85, longitude = 150.05, start_date = "20221001", end_date = "20221201", values = c("max_temp", "min_temp", "rain"), api_key = "your_api_key" ) ## End(Not run)
## Not run: # requires an API key as your email address # Source data from latitude and longitude coordinates (gridded data) for # max and minimum temperature and rainfall for Southwood, QLD. wd <- get_data_drill( latitude = -27.85, longitude = 150.05, start_date = "20221001", end_date = "20221201", values = c("max_temp", "min_temp", "rain"), api_key = "your_api_key" ) ## End(Not run)
Fetch APSIM .met file formatted weather data from the weather data from the SILO API of spatially interpolated weather data (DataDrill). The daily climate surfaces have been derived either by splining or kriging the observational data. The returned values contain “source” columns, which denote how the observations were derived. The grid spans 112° to 154°, -10° to -44° with resolution 0.05° latitude by 0.05° longitude (approximately 5 km × 5 km).
get_data_drill_apsim( longitude, latitude, start_date, end_date = Sys.Date(), api_key = get_key(service = "SILO") )
get_data_drill_apsim( longitude, latitude, start_date, end_date = Sys.Date(), api_key = get_key(service = "SILO") )
longitude |
A single |
latitude |
A single |
start_date |
A |
end_date |
A |
api_key |
A |
Note that when saving, comments from SILO will be included, but these will
not be printed as a part of the resulting met
object in your R session.
An apsimx object of class ‘met’ with attributes.
Rainfall
Maximum temperature
Minimum temperature
Vapour pressure
Class A pan evaporation
Solar exposure, consisting of both direct and diffuse components
Solar radiation: total incoming downward shortwave radiation on a horizontal surface, derived from estimates of cloud oktas and sunshine duration2.
Evaporation and evapotranspiration: an overview of the variables provided by SILO is available here, https://data.longpaddock.qld.gov.au/static/publications/Evapotranspiration_overview.pdf.
Where the source code is a 6 digit string comprising the source code for the 6 variables. The single digit code for each variable is:
an actual observation;
an actual observation from a composite station;
a value interpolated from daily observations;
a value interpolated from daily observations using the anomaly interpolation method for CLIMARC data;
a synthetic pan value; or
an interpolated long term average.
To save “met” objects the apsimx::write_apsim_met()
is reexported.
Note that when saving, comments from SILO will be included, but these will
not be printed as a part of the resulting met
object in your R session.
Rodrigo Pires, [email protected], and Adam Sparks, [email protected]
Rayner, D. (2005). Australian synthetic daily Class A pan evaporation. Technical Report December 2005, Queensland Department of Natural Resources and Mines, Indooroopilly, Qld., Australia, 40 pp.
Morton, F. I. (1983). Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology, Journal of Hydrology, Volume 66, 1-76.
Other SILO:
find_nearby_stations()
,
find_stations_in()
,
get_data_drill()
,
get_patched_point()
,
get_patched_point_apsim()
,
get_stations_metadata()
,
silo_daily_values
Other data fetching:
get_ag_bulletin()
,
get_coastal_forecast()
,
get_data_drill()
,
get_dpird_apsim()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_patched_point()
,
get_patched_point_apsim()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
Other APSIM:
get_dpird_apsim()
,
get_patched_point_apsim()
,
reexports
## Not run: # requires an API key as your email address # Source data from latitude and longitude coordinates (gridded data) for # max and minimum temperature and rainfall for Southwood, QLD. wd <- get_data_drill_apsim( latitude = -27.85, longitude = 150.05, start_date = "20220101", end_date = "20221231", api_key = "your_api_key" ) ## End(Not run)
## Not run: # requires an API key as your email address # Source data from latitude and longitude coordinates (gridded data) for # max and minimum temperature and rainfall for Southwood, QLD. wd <- get_data_drill_apsim( latitude = -27.85, longitude = 150.05, start_date = "20220101", end_date = "20221231", api_key = "your_api_key" ) ## End(Not run)
Automates the retrieval and conversion of summary data from the DPIRD Weather 2.0 API to an APSIM .met file formatted weather data object.
get_dpird_apsim( station_code, start_date, end_date = Sys.Date(), api_key = get_key(service = "DPIRD") )
get_dpird_apsim( station_code, start_date, end_date = Sys.Date(), api_key = get_key(service = "DPIRD") )
station_code |
A |
start_date |
A |
end_date |
A |
api_key |
A |
An apsimx object of class ‘met’ with attributes.
To save “met” objects the apsimx::write_apsim_met()
is reexported.
Note that when saving, comments from SILO will be included, but these will
not be printed as a part of the resulting met
object in your R session.
Adam H. Sparks, [email protected]
Other DPIRD:
dpird_extreme_weather_values
,
dpird_minute_values
,
dpird_summary_values
,
find_nearby_stations()
,
find_stations_in()
,
get_dpird_availability()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_stations_metadata()
Other data fetching:
get_ag_bulletin()
,
get_coastal_forecast()
,
get_data_drill()
,
get_data_drill_apsim()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_patched_point()
,
get_patched_point_apsim()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
Other APSIM:
get_data_drill_apsim()
,
get_patched_point_apsim()
,
reexports
## Not run: # Get an APSIM format object for Binnu # Note that you need to supply your own API key wd <- get_dpird_apsim( station_code = "BI", start_date = "20220101", end_date = "20221231", api_key = "your_api_key" ) ## End(Not run)
## Not run: # Get an APSIM format object for Binnu # Note that you need to supply your own API key wd <- get_dpird_apsim( station_code = "BI", start_date = "20220101", end_date = "20221231", api_key = "your_api_key" ) ## End(Not run)
Fetch the availability metadata of weather stations in the DPIRD weather station network from the Weather 2.0 API.
get_dpird_availability( station_code = NULL, start_date = NULL, end_date = NULL, values = "availability", api_key = get_key(service = "DPIRD") )
get_dpird_availability( station_code = NULL, start_date = NULL, end_date = NULL, values = "availability", api_key = get_key(service = "DPIRD") )
station_code |
A |
start_date |
A |
end_date |
A |
values |
A |
api_key |
A |
a data.table::data.table()
with station_code
and the requested
metadata.
availability (which will return all of the following values),
availabilityCurrentHour,
availabilityLast7DaysSince9AM,
availabilityLast7DaysSince12AM,
availabilityLast14DaysSince9AM,
availabilityLast14DaysSince12AM,
availabilityLast24Hours,
availabilityMonthToDateSince12AM,
availabilityMonthToDateTo9AM,
availabilitySince9AM,
availabilitySince12AM,
availabilityTo9AM,
availabilityYearToDateSince12AM, and
availabilityYearToDateTo9AM
Adam H. Sparks, [email protected]
Other DPIRD:
dpird_extreme_weather_values
,
dpird_minute_values
,
dpird_summary_values
,
find_nearby_stations()
,
find_stations_in()
,
get_dpird_apsim()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_stations_metadata()
Other metadata:
find_forecast_towns()
,
find_nearby_stations()
,
find_stations_in()
,
get_available_imagery()
,
get_available_radar()
,
get_stations_metadata()
## Not run: # Note that you need to supply your own API key # Here we check the up time for the current year for Westonia WS001 <- get_dpird_availability(station_code = "WS001", api_key = "your_api_key") # Here we check the up time for 2017 for Binnu BN <- get_dpird_availability( station_code = "BI", start_date = "20170101", end_date = "20171231", api_key = "your_api_key" ) ## End(Not run)
## Not run: # Note that you need to supply your own API key # Here we check the up time for the current year for Westonia WS001 <- get_dpird_availability(station_code = "WS001", api_key = "your_api_key") # Here we check the up time for 2017 for Binnu BN <- get_dpird_availability( station_code = "BI", start_date = "20170101", end_date = "20171231", api_key = "your_api_key" ) ## End(Not run)
Fetch nicely formatted individual extreme weather summaries from the DPIRD Weather 2.0 API.
get_dpird_extremes( station_code, values = "all", api_key = get_key(service = "DPIRD") )
get_dpird_extremes( station_code, values = "all", api_key = get_key(service = "DPIRD") )
station_code |
A |
values |
A |
api_key |
A |
a data.table::data.table()
of one row with station_code
,
station_name
, latitude
, longitude
, date_time
of the query and the
extreme weather information according to the value(s) selected.
all (which will return all of the following values),
erosionCondition,
erosionConditionLast7Days,
erosionConditionLast7DaysDays,
erosionConditionLast7DaysMinutes,
erosionConditionLast14Days,
erosionConditionLast14DaysDays,
erosionConditionLast14DaysMinutes,
erosionConditionMonthToDate,
erosionConditionMonthToDateDays,
erosionConditionMonthToDateMinutes,
erosionConditionMonthToDateStartTime,
erosionConditionSince12AM,
erosionConditionSince12AMMinutes,
erosionConditionSince12AMStartTime,
erosionConditionYearToDate,
erosionConditionYearToDateDays,
erosionConditionYearToDateMinutes,
erosionConditionYearToDateStartTime,
frostCondition,
frostConditionLast7Days,
frostConditionLast7DaysDays,
frostConditionLast7DaysMinutes,
frostConditionLast14Days,
frostConditionLast14DaysDays,
frostConditionLast14DaysMinutes,
frostConditionMonthToDate,
frostConditionMonthToDateDays,
frostConditionMonthToDateMinutes,
frostConditionMonthToDateStartTime,
frostConditionSince9AM,
frostConditionSince9AMMinutes,
frostConditionSince9AMStartTime,
frostConditionTo9AM,
frostConditionTo9AMMinutes,
frostConditionTo9AMStartTime,
frostConditionYearToDate,
frostConditionYearToDate,
frostConditionYearToDateMinutes,
frostConditionYearToDateStartTime,
heatCondition,
heatConditionLast7Days,
heatConditionLast7DaysDays,
heatConditionLast7DaysMinutes,
heatConditionLast14Days,
heatConditionLast14DaysDays,
heatConditionLast14DaysMinutes,
heatConditionMonthToDate,
heatConditionMonthToDateDays,
heatConditionMonthToDateMinutes,
heatConditionMonthToDateStartTime,
heatConditionSince12AM,
heatConditionSince12AMMinutes,
heatConditionSince12AMStartTime,
heatConditionYearToDate,
heatConditionYearToDateDays,
heatConditionYearToDateMinutes, and
heatConditionYearToDateStartTime
Rodrigo Pires, [email protected], and Adam Sparks, [email protected]
Other DPIRD:
dpird_extreme_weather_values
,
dpird_minute_values
,
dpird_summary_values
,
find_nearby_stations()
,
find_stations_in()
,
get_dpird_apsim()
,
get_dpird_availability()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_stations_metadata()
Other data fetching:
get_ag_bulletin()
,
get_coastal_forecast()
,
get_data_drill()
,
get_data_drill_apsim()
,
get_dpird_apsim()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_patched_point()
,
get_patched_point_apsim()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
## Not run: # Query Bonnie Rock station for wind erosion and heat extreme events # Note that you need to supply your own API key xtreme <- get_dpird_extremes( station_code = "BR", values = c("erosionCondition", "heatCondition"), api_key = "your_api_key" ) ## End(Not run)
## Not run: # Query Bonnie Rock station for wind erosion and heat extreme events # Note that you need to supply your own API key xtreme <- get_dpird_extremes( station_code = "BR", values = c("erosionCondition", "heatCondition"), api_key = "your_api_key" ) ## End(Not run)
Fetch nicely formatted minute weather station data from the DPIRD Weather 2.0 API for a maximum 24-hour period.
get_dpird_minute( station_code, start_date_time = lubridate::now() - lubridate::hours(24L), minutes = 1440L, values = "all", api_key = get_key(service = "DPIRD") )
get_dpird_minute( station_code, start_date_time = lubridate::now() - lubridate::hours(24L), minutes = 1440L, values = "all", api_key = get_key(service = "DPIRD") )
station_code |
A |
start_date_time |
A |
minutes |
An |
values |
A |
api_key |
A |
a data.table::data.table()
with station_code
and the date interval
queried together with the requested weather variables.
all (which will return all of the following values),
airTemperature,
dateTime,
dewPoint,
rainfall,
relativeHumidity,
soilTemperature,
solarIrradiance,
wetBulb,
wind,
windAvgSpeed,
windMaxSpeed, and
windMinSpeed
Please note this function converts date-time columns from Coordinated Universal Time ‘UTC’ returned by the API to Australian Western Standard Time ‘AWST’.
Adam H. Sparks, [email protected]
Other DPIRD:
dpird_extreme_weather_values
,
dpird_minute_values
,
dpird_summary_values
,
find_nearby_stations()
,
find_stations_in()
,
get_dpird_apsim()
,
get_dpird_availability()
,
get_dpird_extremes()
,
get_dpird_summaries()
,
get_stations_metadata()
Other data fetching:
get_ag_bulletin()
,
get_coastal_forecast()
,
get_data_drill()
,
get_data_drill_apsim()
,
get_dpird_apsim()
,
get_dpird_extremes()
,
get_dpird_summaries()
,
get_patched_point()
,
get_patched_point_apsim()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
## Not run: # Note that you need to supply your own API key get_dpird_minute( station_code = "SP", start_date_time = "2023-02-01 13:00:00", minutes = 1440, values = c("airTemperature", "solarIrradiance", "wind"), api_key = "your_api_key" ) ## End(Not run)
## Not run: # Note that you need to supply your own API key get_dpird_minute( station_code = "SP", start_date_time = "2023-02-01 13:00:00", minutes = 1440, values = c("airTemperature", "solarIrradiance", "wind"), api_key = "your_api_key" ) ## End(Not run)
Fetch nicely formatted individual station weather summaries from the DPIRD Weather 2.0 API.
get_dpird_summaries( station_code, start_date, end_date = Sys.Date(), interval = c("daily", "15min", "30min", "hourly", "monthly", "yearly"), values = "all", api_key = get_key(service = "DPIRD") )
get_dpird_summaries( station_code, start_date, end_date = Sys.Date(), interval = c("daily", "15min", "30min", "hourly", "monthly", "yearly"), values = "all", api_key = get_key(service = "DPIRD") )
station_code |
A |
start_date |
A |
end_date |
A |
interval |
A |
values |
A |
api_key |
A |
a data.table::data.table()
with station_code
and the date
interval queried together with the requested weather variables in
alphabetical order. The first ten columns will always be:
station_code
,
station_name
,
longitude
,
latitude
,
year
,
month
,
day
,
hour
,
minute
, and if month
or finer is present,
date
(a combination of year, month, day, hour, minute as appropriate).
The earliest available data start from August of 2000 for Vasse, “VA”.
Column names are converted from the default returns of the API to
be snake_case formatted and where appropriate, the names of the values
that are analogous between SILO and DPIRD data are
named using the same name for ease of interoperability, e.g., using
rbind()
to create a data.table
that contains data from both APIs.
However, use with caution and don't mix datasets of different time-steps,
i.e., this function gets many summary values not just “daily”
time-step data. The functions that access the SILO
API only provide access to daily data, so don't mix (sub)hourly,
monthly or yearly data from DPIRD with SILO.
all (which will return all of the following values),
airTemperature,
airTemperatureAvg,
airTemperatureMax,
airTemperatureMaxTime,
airTemperatureMin,
airTemperatureMinTime,
apparentAirTemperature,
apparentAirTemperatureAvg,
apparentAirTemperatureMax,
apparentAirTemperatureMaxTime,
apparentAirTemperatureMin,
apparentAirTemperatureMinTime,
barometricPressure,
barometricPressureAvg,
barometricPressureMax,
barometricPressureMaxTime,
barometricPressureMin,
barometricPressureMinTime,
battery,
batteryMinVoltage,
batteryMinVoltageDateTime,
chillHours,
deltaT,
deltaTAvg,
deltaTMax,
deltaTMaxTime,
deltaTMin,
deltaTMinTime,
dewPoint,
dewPointAvg,
dewPointMax,
dewPointMaxTime,
dewPointMin,
dewPointMinTime,
erosionCondition,
erosionConditionMinutes,
erosionConditionStartTime,
errors,
etoShortCrop,
etoTallCrop,
evapotranspiration,
evapotranspirationShortCrop,
evapotranspirationTallCrop,
frostCondition,
frostConditionMinutes,
frostConditionStartTime,
heatCondition,
heatConditionMinutes,
heatConditionStartTime,
observations,
observationsCount,
observationsPercentage,
panEvaporation,
panEvaporation12AM,
rainfall,
relativeHumidity,
relativeHumidityAvg,
relativeHumidityMax,
relativeHumidityMaxTime,
relativeHumidityMin,
relativeHumidityMinTime,
richardsonUnits,
soilTemperature,
soilTemperatureAvg,
soilTemperatureMax,
soilTemperatureMaxTime,
soilTemperatureMin,
soilTemperatureMinTime,
solarExposure,
wetBulb,
wetBulbAvg,
wetBulbMax,
wetBulbMaxTime,
wetBulbMin,
wetBulbMinTime,
wind,
windAvgSpeed, and
windMaxSpeed
Please note this function converts date-time columns from Coordinated Universal Time ‘UTC’ to Australian Western Standard Time ‘AWST’.
Adam H. Sparks, [email protected], and Rodrigo Pires, [email protected]
Other DPIRD:
dpird_extreme_weather_values
,
dpird_minute_values
,
dpird_summary_values
,
find_nearby_stations()
,
find_stations_in()
,
get_dpird_apsim()
,
get_dpird_availability()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_stations_metadata()
Other data fetching:
get_ag_bulletin()
,
get_coastal_forecast()
,
get_data_drill()
,
get_data_drill_apsim()
,
get_dpird_apsim()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_patched_point()
,
get_patched_point_apsim()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
## Not run: # Note that you need to supply your own API key # Use default for end date (current system date) to get rainfall wd <- get_dpird_summaries( station_code = "CL001", start_date = "20171028", api_key = "your_api_key", interval = "yearly", values = "rainfall" ) # Only for wind and erosion conditions for daily time interval wd <- get_dpird_summaries( station_code = "BI", start_date = "20220501", end_date = "20220502", api_key = "your_api_key", interval = "daily", values = c( "wind", "erosionCondition", "erosionConditionMinutes", "erosionConditionStartTime" ) ) ## End(Not run)
## Not run: # Note that you need to supply your own API key # Use default for end date (current system date) to get rainfall wd <- get_dpird_summaries( station_code = "CL001", start_date = "20171028", api_key = "your_api_key", interval = "yearly", values = "rainfall" ) # Only for wind and erosion conditions for daily time interval wd <- get_dpird_summaries( station_code = "BI", start_date = "20220501", end_date = "20220502", api_key = "your_api_key", interval = "daily", values = c( "wind", "erosionCondition", "erosionConditionMinutes", "erosionConditionStartTime" ) ) ## End(Not run)
Checks first to get key from your .Rprofile or .Renviron (or similar) file. If it's not found, then it suggests setting it up. Can be used to check that your key that R is using is the key that you wish to be using or for guidance in setting up the keys.
get_key(service = c("DPIRD", "SILO"))
get_key(service = c("DPIRD", "SILO"))
service |
(character) The API host, either “DPIRD” or “SILO”. |
The suggestion is to use your .Renviron to set up the API keys. However, if you regularly interact with the APIs outside of R using some other language you may wish to set these up in your .bashrc, .zshrc, or config.fish for cross-language use.
A string value with either a DPIRD Weather 2.0 API or SILO API key value.
## Not run: get_key(service = "DPIRD") get_key(service = "SILO") ## End(Not run)
## Not run: get_key(service = "DPIRD") get_key(service = "SILO") ## End(Not run)
Fetch nicely formatted weather data from the SILO API derived from the BOM station observations (PatchedPoint) data.
get_patched_point( station_code, start_date, end_date = Sys.Date(), values = "all", api_key = get_key(service = "SILO") )
get_patched_point( station_code, start_date, end_date = Sys.Date(), values = "all", api_key = get_key(service = "SILO") )
station_code |
A |
start_date |
A |
end_date |
A |
values |
A |
api_key |
A |
a data.table::data.table()
with the weather data queried with the
weather variables in alphabetical order. The first eight columns will
always be:
station_code
,
station_name
,
longitude
,
latitude
,
elev_m
(elevation in metres),
date
(ISO8601 format, "YYYYMMDD"),
year
,
month
,
day
,
extracted
(the date on which the query was made)
Column names are converted from the default returns of the API to be
snake_case formatted and where appropriate, the names of the values that
are analogous between SILO and DPIRD data are named
using the same name for ease of interoperability, e.g., using
rbind()
to create a data.table
that contains data from both APIs.
The SILO documentation provides the following information for the PatchedPoint data.
These data are a continuous daily time series of data at either recording stations or grid points across Australia:
Data at station locations consists of observational records which have been supplemented by interpolated estimates when observed data are missing. Datasets are available at approximately 8,000 Bureau of Meteorology recording stations around Australia.
Data at grid points consists entirely of interpolated estimates. The data are taken from the SILO gridded datasets and are available at any pixel on a 0.05° × 0.05° grid over the land area of Australia (including some islands).
Which will return all of the following values
Rainfall
Maximum temperature
Minimum temperature
Vapour pressure
Vapour pressure deficit
Class A pan evaporation
Synthetic estimate1
Combination (synthetic estimate pre-1970, class A pan 1970 onwards)
Morton's shallow lake evaporation
Solar exposure, consisting of both direct and diffuse components
Relative humidity at the time of maximum temperature
Relative humidity at the time of minimum temperature
short crop
tall crop6
Morton's areal actual evapotranspiration
Morton's point potential evapotranspiration
Morton's wet-environment areal potential evapotranspiration over land
Mean sea level pressure
Solar radiation: total incoming downward shortwave radiation on a horizontal surface, derived from estimates of cloud oktas and sunshine duration3.
Relative humidity: calculated using the vapour pressure measured at 9am, and the saturation vapour pressure computed using either the maximum or minimum temperature6.
Evaporation and evapotranspiration: an overview of the variables provided by SILO is available here, https://data.longpaddock.qld.gov.au/static/publications/Evapotranspiration_overview.pdf.
The data are supplied with codes indicating how each datum was obtained.
Official observation as supplied by the Bureau of Meteorology
Deaccumulated rainfall (original observation was recorded over a period exceeding the standard 24 hour observation period).
Interpolated from daily observations for that date.
Synthetic Class A pan evaporation, calculated from temperatures, radiation and vapour pressure.
Interpolated from daily observations using an anomaly interpolation method.
Interpolated from the long term averages of daily observations for that day of year.
Rodrigo Pires, [email protected], and Adam Sparks, [email protected]
Rayner, D. (2005). Australian synthetic daily Class A pan evaporation. Technical Report December 2005, Queensland Department of Natural Resources and Mines, Indooroopilly, Qld., Australia, 40 pp.
Morton, F. I. (1983). Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology, Journal of Hydrology, Volume 66, 1-76.
Zajaczkowski, J., Wong, K., & Carter, J. (2013). Improved historical solar radiation gridded data for Australia, Environmental Modelling & Software, Volume 49, 64–77. DOI: doi:10.1016/j.envsoft.2013.06.013.
Food and Agriculture Organization of the United Nations, Irrigation and drainage paper 56: Crop evapotranspiration - Guidelines for computing crop water requirements, 1998.
ASCE’s Standardized Reference Evapotranspiration Equation, proceedings of the National Irrigation Symposium, Phoenix, Arizona, 2000.
For further details refer to Jeffrey, S.J., Carter, J.O., Moodie, K.B. and Beswick, A.R. (2001). Using spatial interpolation to construct a comprehensive archive of Australian climate data, Environmental Modelling and Software, Volume 16/4, 309-330. DOI: doi:10.1016/S1364-8152(01)00008-1.
Other SILO:
find_nearby_stations()
,
find_stations_in()
,
get_data_drill()
,
get_data_drill_apsim()
,
get_patched_point_apsim()
,
get_stations_metadata()
,
silo_daily_values
Other data fetching:
get_ag_bulletin()
,
get_coastal_forecast()
,
get_data_drill()
,
get_data_drill_apsim()
,
get_dpird_apsim()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_patched_point_apsim()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
## Not run: # requires an API key as your email address # Source observation data for station Wongan Hills station, WA (008137) wd <- get_patched_point(station_code = "008137", start_date = "2021-06-01", end_date = "2021-07-01", values = "all", api_key = "your_api_key") ## End(Not run)
## Not run: # requires an API key as your email address # Source observation data for station Wongan Hills station, WA (008137) wd <- get_patched_point(station_code = "008137", start_date = "2021-06-01", end_date = "2021-07-01", values = "all", api_key = "your_api_key") ## End(Not run)
Fetch APSIM .met file formatted weather data from the SILO API derived from the BOM station observations (PatchedPoint) data.
get_patched_point_apsim( station_code, start_date, end_date = Sys.Date(), api_key = get_key(service = "SILO") )
get_patched_point_apsim( station_code, start_date, end_date = Sys.Date(), api_key = get_key(service = "SILO") )
station_code |
A |
start_date |
A |
end_date |
A |
api_key |
A |
The SILO documentation provides the following information for the PatchedPoint data.
These data are a continuous daily time series of data at either recording stations or grid points across Australia:
Data at station locations consists of observational records which have been supplemented by interpolated estimates when observed data are missing. Datasets are available at approximately 8,000 Bureau of Meteorology recording stations around Australia.
Data at grid points consists entirely of interpolated estimates. The data are taken from the SILO gridded datasets and are available at any pixel on a 0.05° × 0.05° grid over the land area of Australia (including some islands).
An apsimx object of class ‘met’ with attributes.
Rainfall
Maximum temperature
Minimum temperature
Vapour pressure
Class A pan evaporation
Solar exposure, consisting of both direct and diffuse components
Solar radiation: total incoming downward shortwave radiation on a horizontal surface, derived from estimates of cloud oktas and sunshine duration2.
Evaporation and evapotranspiration: an overview of the variables provided by SILO is available here, https://data.longpaddock.qld.gov.au/static/publications/Evapotranspiration_overview.pdf.
Where the source code is a 6 digit string comprising the source code for the 6 variables. The single digit code for each variable is:
an actual observation;
an actual observation from a composite station;
a value interpolated from daily observations;
a value interpolated from daily observations using the anomaly interpolation method for CLIMARC data;
a synthetic pan value; or
an interpolated long term average.
To save “met” objects the apsimx::write_apsim_met()
is reexported.
Note that when saving, comments from SILO will be included, but these will
not be printed as a part of the resulting met
object in your R session.
Rodrigo Pires, [email protected], and Adam Sparks, [email protected]
Rayner, D. (2005). Australian synthetic daily Class A pan evaporation. Technical Report December 2005, Queensland Department of Natural Resources and Mines, Indooroopilly, Qld., Australia, 40 pp.
Morton, F. I. (1983). Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology, Journal of Hydrology, Volume 66, 1-76.
Other SILO:
find_nearby_stations()
,
find_stations_in()
,
get_data_drill()
,
get_data_drill_apsim()
,
get_patched_point()
,
get_stations_metadata()
,
silo_daily_values
Other APSIM:
get_data_drill_apsim()
,
get_dpird_apsim()
,
reexports
Other data fetching:
get_ag_bulletin()
,
get_coastal_forecast()
,
get_data_drill()
,
get_data_drill_apsim()
,
get_dpird_apsim()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_patched_point()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
## Not run: # requires an API key as your email address # Source observation data for Wongan Hills station, WA (008137) wd <- get_patched_point_apsim( station_code = "008137", start_date = "20220101", end_date = "20221231", api_key = "your_api_key" ) ## End(Not run)
## Not run: # requires an API key as your email address # Source observation data for Wongan Hills station, WA (008137) wd <- get_patched_point_apsim( station_code = "008137", start_date = "20220101", end_date = "20221231", api_key = "your_api_key" ) ## End(Not run)
Fetch nicely formatted daily précis forecast from the BOM, which contains seven-day town forecasts for a specified state or territory. Ported from bomrang.
get_precis_forecast(state = "AUS")
get_precis_forecast(state = "AUS")
state |
Australian state or territory as full name or postal code.
Fuzzy string matching via |
Allowed state and territory postal codes, only one state per request or all using 'AUS'.
Australia, returns forecast for all states, NT and ACT
Australian Capital Territory (will return NSW)
New South Wales
Northern Territory
Queensland
South Australia
Tasmania
Victoria
Western Australia
A data.table::data.table()
of an Australia BOM précis seven day
forecasts for BOM selected towns.
Adam H. Sparks, [email protected], Keith Pembleton, [email protected], and Paul Melloy, [email protected]
Forecast data come from Australian Bureau of Meteorology (BOM)
Weather Data Services
http://www.bom.gov.au/catalogue/data-feeds.shtml
Location data and other metadata for towns come from the BOM
anonymous FTP server with spatial data
ftp://ftp.bom.gov.au/anon/home/adfd/spatial/, specifically the
DBF file portion of a shapefile,
ftp://ftp.bom.gov.au/anon/home/adfd/spatial/IDM00013.dbf.
Other BOM:
find_forecast_towns()
,
get_ag_bulletin()
,
get_available_imagery()
,
get_available_radar()
,
get_coastal_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
,
parse_ag_bulletin()
,
parse_coastal_forecast()
,
parse_precis_forecast()
Other data fetching:
get_ag_bulletin()
,
get_coastal_forecast()
,
get_data_drill()
,
get_data_drill_apsim()
,
get_dpird_apsim()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_patched_point()
,
get_patched_point_apsim()
,
get_radar_imagery()
,
get_satellite_imagery()
# get the short forecast for Western Australia get_precis_forecast(state = "WA")
# get the short forecast for Western Australia get_precis_forecast(state = "WA")
Fetch BOM radar imagery from ftp://ftp.bom.gov.au/anon/gen/radar/
and return a magick image object. Files available are the
most recent radar snapshot which are updated approximately every 6 to 10
minutes. It is suggested to check file availability first by using
get_available_radar()
.
get_radar_imagery(product_id, path = NULL, download_only = FALSE)
get_radar_imagery(product_id, path = NULL, download_only = FALSE)
product_id |
|
path |
|
download_only |
|
Valid BOM Radar Product IDs for radar imagery
can be obtained from get_available_radar()
.
A magick object of the most recent radar image snapshot
published by the BOM. If download_only = TRUE
there will be
a NULL
return value with the download path printed in the console as a
message.
Dean Marchiori, [email protected]
Australian Bureau of Meteorology (BOM) radar images
http://www.bom.gov.au/australia/radar/
Other BOM:
find_forecast_towns()
,
get_ag_bulletin()
,
get_available_imagery()
,
get_available_radar()
,
get_coastal_forecast()
,
get_precis_forecast()
,
get_satellite_imagery()
,
parse_ag_bulletin()
,
parse_coastal_forecast()
,
parse_precis_forecast()
Other data fetching:
get_ag_bulletin()
,
get_coastal_forecast()
,
get_data_drill()
,
get_data_drill_apsim()
,
get_dpird_apsim()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_patched_point()
,
get_patched_point_apsim()
,
get_precis_forecast()
,
get_satellite_imagery()
# Fetch most recent radar image for Wollongong 256km radar imagery <- get_radar_imagery(product_id = "IDR032") imagery
# Fetch most recent radar image for Wollongong 256km radar imagery <- get_radar_imagery(product_id = "IDR032") imagery
Fetch BOM satellite GeoTIFF imagery from
ftp://ftp.bom.gov.au/anon/gen/gms/ and return a terra
SpatRaster
S4 class (see [terra::rast()]
) or stars S3 stars
object of GeoTIFF files. Files are available at ten minutes update
frequency with a 24-hour delete time. It is suggested to check file
availability first by using get_available_imagery()
. Ported from
bomrang with modifications.
get_satellite_imagery(product_id, scans = 1, compat = "terra")
get_satellite_imagery(product_id, scans = 1, compat = "terra")
product_id |
|
scans |
|
compat |
|
Valid BOM satellite Product IDs for use with product_id include:
AHI cloud cover only 2km FD GEOS GIS
AHI IR (Ch13) greyscale 2km FD GEOS GIS
AHI VIS (Ch3) greyscale 2km FD GEOS GIS
AHI IR (Ch13) Zehr 2km FD GEOS GIS
AHI VIS (true colour) / IR (Ch13 greyscale) composite 1km FD GEOS GIS
AHI VIS (true colour) / IR (Ch13 greyscale) composite 2km FD GEOS GIS
AHI WV (Ch8) 2km FD GEOS GIS
AHI cloud cover only 2km AUS equirect. GIS
AHI IR (Ch13) greyscale 2km AUS equirect. GIS
AHI VIS (Ch3) greyscale 2km AUS equirect. GIS
AHI IR (Ch13) Zehr 2km AUS equirect. GIS
AHI VIS (true colour) / IR (Ch13 greyscale) composite 1km AUS equirect. GIS
AHI VIS (true colour) / IR (Ch13 greyscale) composite 2km AUS equirect. GIS
AHI WV (Ch8) 2km AUS equirect. GIS
AHI VIS (Ch3) greyscale 0.5km AUS equirect. GIS
A terra SpatRaster
S4 class (see [terra::rast()]
) or
stars S3 stars
class object as selected by the user by
specifying compat
of GeoTIFF images with layers named by BOM
product ID, timestamp and band.
The original bomrang version of this function supported local file caching using hoardr. This version does not support this functionality any longer due to issues with CRAN and hoardr.
Adam H. Sparks, [email protected]
Australian Bureau of Meteorology (BOM) high-definition satellite
images
http://www.bom.gov.au/australia/satellite/index.shtml.
Other BOM:
find_forecast_towns()
,
get_ag_bulletin()
,
get_available_imagery()
,
get_available_radar()
,
get_coastal_forecast()
,
get_precis_forecast()
,
get_radar_imagery()
,
parse_ag_bulletin()
,
parse_coastal_forecast()
,
parse_precis_forecast()
Other data fetching:
get_ag_bulletin()
,
get_coastal_forecast()
,
get_data_drill()
,
get_data_drill_apsim()
,
get_dpird_apsim()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_patched_point()
,
get_patched_point_apsim()
,
get_precis_forecast()
,
get_radar_imagery()
# Fetch AHI VIS (true colour) / IR (Ch13 greyscale) composite 1km FD # GEOS GIS {terra} `SpatRaster`` object for most recent single scan available imagery <- get_satellite_imagery(product_id = "IDE00425", scans = 1) plot(imagery) # Get a list of available image files and use that to specify files for # download, downloading the two most recent files available avail <- get_available_imagery(product_id = "IDE00425") imagery <- get_satellite_imagery(product_id = avail, scans = 2) plot(imagery)
# Fetch AHI VIS (true colour) / IR (Ch13 greyscale) composite 1km FD # GEOS GIS {terra} `SpatRaster`` object for most recent single scan available imagery <- get_satellite_imagery(product_id = "IDE00425", scans = 1) plot(imagery) # Get a list of available image files and use that to specify files for # download, downloading the two most recent files available avail <- get_available_imagery(product_id = "IDE00425") imagery <- get_satellite_imagery(product_id = avail, scans = 2) plot(imagery)
Download the latest station locations and metadata for stations in the SILO and DPIRD networks. For BOM stations that exist in SILO, but lack metadata from BOM, the rows will exist to indicate that the station is in the SILO data set, but there is no corresponding BOM metadata available.
get_stations_metadata( station_code = NULL, station_name = NULL, which_api = "all", api_key = NULL, include_closed = FALSE, rich = FALSE )
get_stations_metadata( station_code = NULL, station_name = NULL, which_api = "all", api_key = NULL, include_closed = FALSE, rich = FALSE )
station_code |
An optional value that should be provided as a single
|
station_name |
An optional value that should be provided as either a
single |
which_api |
A |
api_key |
A |
include_closed |
A |
rich |
A |
A data.table::data.table()
of BOM weather stations'
metadata for stations available from SILO and weather stations'
metadata for stations available from DPIRD's Weather 2.0
API with the following columns sorted by state
and
station_name
.
station_code: | Unique station code. factor
|
station_name: | Unique station name. character
|
start: | Date observations start. date
|
end: | Date observations end. date
|
latitude: | Latitude in decimal degrees. numeric
|
longitude: | Longitude in decimal degrees. numeric
|
state: | State in which the station is located. character
|
elev_m: | Station elevation in metres. numeric
|
source: | Organisation responsible for the data or station
maintenance. character
|
include_closed: | Station include_closed, one of ‘open’ or
‘closed’. character
|
wmo: | World Meteorological Organisation, (WMO), number
if applicable. numeric
|
rich values
|
|
capabilities: | a list of the station's capabilities (data that it
records). character
|
probe_height: | temperature probe height in metres. double
|
rain_gauge_height | rain gauge height in metres. double
|
wind_probe_heights: | wind probe heights always 3 metres, although
some have 10 metre probes. integer
|
For stations in the SILO API, BOM does
not report the exact date on which stations opened or closed, only the
year. Therefore the start
and end
columns will indicate January 1 of
the year that a station opened or closed, whereas stations in the
DPIRD network have the date to the day. For BOM
stations that are closed for the current year, this indicates that the
station closed sometime during the current year prior to the request being
made. NA
in the current year indicates a station is still open.
There are discrepancies between the BOM's official station metadata, e.g. longitude and latitude values and SILO metadata. In these cases, the BOM metadata is used as it is considered to be the authority on the stations' locations.
The station names are returned by both APIs in full caps. For purposes of cleaner graphs and maps where these data may be sued, this function converts them to proper name formats/title case with the first letter of every word capitalised excepting words like “at” or “on” and keeps acronyms like “AWS” or “PIRSA” or state abbreviations in the station names as all caps.
Adam H. Sparks, [email protected]
Station location and other metadata are sourced from the Australian Bureau of
Meteorology (BOM) webpage, Bureau of Meteorology Site Numbers:
http://www.bom.gov.au/climate/cdo/about/site-num.shtml and
http://www.bom.gov.au/climate/data/lists_by_element/stations.txt and the
DPIRD Weather 2.0 API.
Other DPIRD:
dpird_extreme_weather_values
,
dpird_minute_values
,
dpird_summary_values
,
find_nearby_stations()
,
find_stations_in()
,
get_dpird_apsim()
,
get_dpird_availability()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
Other SILO:
find_nearby_stations()
,
find_stations_in()
,
get_data_drill()
,
get_data_drill_apsim()
,
get_patched_point()
,
get_patched_point_apsim()
,
silo_daily_values
Other metadata:
find_forecast_towns()
,
find_nearby_stations()
,
find_stations_in()
,
get_available_imagery()
,
get_available_radar()
,
get_dpird_availability()
## Not run: # fetch metadata for all stations available in {weatherOz} get_stations_metadata(api_key = "your_api_key") ## End(Not run)
## Not run: # fetch metadata for all stations available in {weatherOz} get_stations_metadata(api_key = "your_api_key") ## End(Not run)
Parse local BOM agriculture bulletin XML file(s) for a specified state or territory or all Australia. Ported from bomrang.
parse_ag_bulletin(state, filepath)
parse_ag_bulletin(state, filepath)
state |
Required value of an Australian state or territory as full name
or postal code. Fuzzy string matching via |
filepath |
A string providing the directory location of the précis file(s) to parse. See Details for more. |
Allowed state and territory postal codes, only one state per request
or all using AUS
.
Australia, returns forecast for all states, NT and ACT
Australian Capital Territory (will return NSW)
New South Wales
Northern Territory
Queensland
South Australia
Tasmania
Victoria
Western Australia
The filepath argument will only accept a directory where files
are located for parsing. DO NOT supply the full path including the file
name. This function will only parse the requested state or all of
Australia in the same fashion as get_precis_forecast()
, provided that the
files are all present in the directory.
A data.table::data.table()
of Australia BOM agricultural
bulletin information.
Adam H. Sparks, [email protected], and Paul Melloy, [email protected]
Agricultural observations are retrieved from the Australian Bureau of
Meteorology (BOM) Weather Data Services Agriculture Bulletins,
http://www.bom.gov.au/catalogue/observations/about-agricultural.shtml.
and
Australian Bureau of Meteorology (BOM)) Weather Data Services
Observation of Rainfall,
http://www.bom.gov.au/climate/how/observations/rain-measure.shtml.
Station location and other metadata are sourced from the Australian Bureau of
Meteorology (BOM) webpage, Bureau of Meteorology Site Numbers:
http://www.bom.gov.au/climate/cdo/about/site-num.shtml.
Other BOM:
find_forecast_towns()
,
get_ag_bulletin()
,
get_available_imagery()
,
get_available_radar()
,
get_coastal_forecast()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
,
parse_coastal_forecast()
,
parse_precis_forecast()
Other parse:
parse_coastal_forecast()
,
parse_precis_forecast()
# parse the ag bulletin for Western Australia # download to tempfile() using basename() to keep original name utils::download.file(url = "ftp://ftp.bom.gov.au/anon/gen/fwo/IDQ60604.xml", destfile = file.path(tempdir(), basename("ftp://ftp.bom.gov.au/anon/gen/fwo/IDQ60604.xml")), mode = "wb") parse_ag_bulletin(state = "QLD", filepath = tempdir())
# parse the ag bulletin for Western Australia # download to tempfile() using basename() to keep original name utils::download.file(url = "ftp://ftp.bom.gov.au/anon/gen/fwo/IDQ60604.xml", destfile = file.path(tempdir(), basename("ftp://ftp.bom.gov.au/anon/gen/fwo/IDQ60604.xml")), mode = "wb") parse_ag_bulletin(state = "QLD", filepath = tempdir())
Parse local BOM daily coastal waters forecast XML file(s) for a specified state or territory or all of Australia.
parse_coastal_forecast(state, filepath)
parse_coastal_forecast(state, filepath)
state |
Required value of an Australian state or territory as full name
or postal code. Fuzzy string matching via |
filepath |
A string providing the directory location of the coastal forecast file(s) to parse. See Details for more. |
Allowed state and territory postal codes, only one state per request
or all using AUS
.
Australia, returns forecast for all states, NT and ACT
Australian Capital Territory (will return NSW)
New South Wales
Northern Territory
Queensland
South Australia
Tasmania
Victoria
Western Australia
The filepath argument will only accept a directory where files
are located for parsing. DO NOT supply the full path including the file
name. This function will only parse the requested state or all of
Australia in the same fashion as get_coastal_forecast()
, provided that
the files are all present in the directory.
A data.table::data.table()
of an Australia BOM Coastal Waters
Forecast.
Dean Marchiori, [email protected], and Paul Melloy, [email protected]
Forecast data come from Australian Bureau of Meteorology (BOM) Weather Data
Services
http://www.bom.gov.au/catalogue/data-feeds.shtml.
Location data and other metadata come from the BOM anonymous
FTP server with spatial data
ftp://ftp.bom.gov.au/anon/home/adfd/spatial/, specifically the
DBF file portion of a shapefile,
ftp://ftp.bom.gov.au/anon/home/adfd/spatial/IDM00003.dbf.
Other BOM:
find_forecast_towns()
,
get_ag_bulletin()
,
get_available_imagery()
,
get_available_radar()
,
get_coastal_forecast()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
,
parse_ag_bulletin()
,
parse_precis_forecast()
Other parse:
parse_ag_bulletin()
,
parse_precis_forecast()
# parse the coastal forecast for Queensland #download to tempfile() using basename() to keep original name utils::download.file(url = "ftp://ftp.bom.gov.au/anon/gen/fwo/IDQ11290.xml", destfile = file.path(tempdir(), basename("ftp://ftp.bom.gov.au/anon/gen/fwo/IDQ11290.xml")), mode = "wb") parse_coastal_forecast(state = "QLD", filepath = tempdir())
# parse the coastal forecast for Queensland #download to tempfile() using basename() to keep original name utils::download.file(url = "ftp://ftp.bom.gov.au/anon/gen/fwo/IDQ11290.xml", destfile = file.path(tempdir(), basename("ftp://ftp.bom.gov.au/anon/gen/fwo/IDQ11290.xml")), mode = "wb") parse_coastal_forecast(state = "QLD", filepath = tempdir())
Parse local BOM daily précis forecast XML file(s) of the seven-day town forecasts for a specified state or territory or all Australia. Ported from bomrang.
parse_precis_forecast(state, filepath)
parse_precis_forecast(state, filepath)
state |
Required value of an Australian state or territory as full name
or postal code. Fuzzy string matching via |
filepath |
A string providing the directory location of the précis file(s) to parse. See Details for more. |
Allowed state and territory postal codes, only one state per request or all using 'AUS'.
Australian Capital Territory (will return NSW)
New South Wales
Northern Territory
Queensland
South Australia
Tasmania
Victoria
Western Australia
Australia, returns forecast for all states, NT and ACT
The filepath argument will only accept a directory where files
are located for parsing. DO NOT supply the full path including the file
name. This function will only parse the requested state or all of
Australia in the same fashion as get_precis_forecast()
, provided that the
files are all present in the directory.
A data.table::data.table()
of Australia BOM précis seven-day
forecasts for BOM selected towns.
Adam H. Sparks, [email protected], and Keith Pembleton, [email protected], and Paul Melloy, [email protected]
Forecast data come from Australian Bureau of Meteorology (BOM)
Weather Data Services
http://www.bom.gov.au/catalogue/data-feeds.shtml
Location data and other metadata for towns come from
the BOM anonymous FTP server with spatial data
ftp://ftp.bom.gov.au/anon/home/adfd/spatial/, specifically the
DBF file portion of a shapefile,
ftp://ftp.bom.gov.au/anon/home/adfd/spatial/IDM00013.dbf
Other BOM:
find_forecast_towns()
,
get_ag_bulletin()
,
get_available_imagery()
,
get_available_radar()
,
get_coastal_forecast()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
,
parse_ag_bulletin()
,
parse_coastal_forecast()
Other parse:
parse_ag_bulletin()
,
parse_coastal_forecast()
# parse the short forecast for Western Australia # download to tempfile() using basename() to keep original name utils::download.file(url = "ftp://ftp.bom.gov.au/anon/gen/fwo/IDQ11295.xml", destfile = file.path(tempdir(), basename("ftp://ftp.bom.gov.au/anon/gen/fwo/IDQ11295.xml")), mode = "wb") parse_precis_forecast(state = "QLD", filepath = tempdir())
# parse the short forecast for Western Australia # download to tempfile() using basename() to keep original name utils::download.file(url = "ftp://ftp.bom.gov.au/anon/gen/fwo/IDQ11295.xml", destfile = file.path(tempdir(), basename("ftp://ftp.bom.gov.au/anon/gen/fwo/IDQ11295.xml")), mode = "wb") parse_precis_forecast(state = "QLD", filepath = tempdir())
A vector object containing 18 items representing valid values to supply
to get_patched_point()
and get_data_drill()
's values argument
taken from the documentation for the SILO API.
silo_daily_values
silo_daily_values
A vector object of 57 items.
https://www.longpaddock.qld.gov.au/silo/about/climate-variables/
Other SILO:
find_nearby_stations()
,
find_stations_in()
,
get_data_drill()
,
get_data_drill_apsim()
,
get_patched_point()
,
get_patched_point_apsim()
,
get_stations_metadata()
Other data:
dpird_extreme_weather_values
,
dpird_minute_values
,
dpird_summary_values
An sf object of the the WA South West Agricultural Region.
south_west_agricultural_region
south_west_agricultural_region
An sf::sf()
polygon object
The zone managed for intensive agricultural activities in South-Western Australia. Also known as the South West Agricultural Area or Clearing Line. This zone defines the easternmost extent of land cleared for agricultural purposes.
Western Australian Land Information Authority - Captured from photographic interpretation of best available orthophotography at date of capture, dates range between 2007 and 2010.
1:20,000
EPSG:4326 - WGS 84 – WGS84 - World Geodetic System 1984, used in GPS https://epsg.io/4326
Western Australia Department of Primary Industries and Regional Development under a Creative Commons Attribution 4.0 Licence