--- title: "weatherOz for DPIRD" author: "Rodrigo Pires, Anna Hepworth, Rebecca O'Leary and Adam H. Sparks" output: rmarkdown::html_vignette: toc: true vignette: > %\VignetteIndexEntry{weatherOz for DPIRD} %\VignetteEngine{knitr::rmarkdown_notangle} %\VignetteEncoding{UTF-8} --- ## About DPIRD Data From the DPIRD Weather Website's ["About" Page](https://weather.agric.wa.gov.au/about). > The Department of Primary Industries and Regional Development's (DPIRD) network of automatic weather stations and radars throughout the state provide timely, relevant and local weather data to assist growers and regional communities make more-informed decisions. > > The weather station data includes air temperature, humidity, rainfall, wind speed and direction, with most stations also measuring incoming solar radiation to calculate evaporation. This website includes dashboards for each station to visualise this data. Data from the DPIRD API are licenced under the [Creative Commons Attribution 3.0 Licence (CC BY 3.0 AU)](https://creativecommons.org/licenses/by/3.0/au/deed.en). ## A Note on API Keys All examples in this vignette assume that you have stored your API key in your .Renviron file. See [Chapter 8](https://rstats.wtf/r-startup.html#renviron) in "What They Forgot to Teach You About R" by Bryan _et al._ for more on storing details in your .Renviron if you are unfamiliar. ## Working With DPIRD Data Three functions are provided to streamline fetching data from the DPIRD Weather 2.0 API endpoints. * `get_dpird_extremes()`, which returns the recorded extreme values for the given station in the DPIRD weather station network.; * `get_dpird_minute()`, which returns weather data in minute increments for stations in the DPIRD weather station network with only the past two years being available; and * `get_dpird_summaries()`, which returns weather data in 15 and 30 minute, hourly, daily, monthly or yearly summary values for stations in the DPIRD weather station network. ## Getting Extreme Weather Values The `get_dpird_extremes()` function fetches and returns nicely formatted individual extreme weather summaries from the DPIRD Weather 2.0 API. You must provide a `station_code` and `API_key`, the other arguments, `values` and `include_closed` are optional. ### Available Values for Extreme Weather * all (which will return all of the following values), * erosionCondition, * erosionConditionLast7Days, * erosionConditionLast7DaysDays, * erosionConditionLast7DaysMinutes, * erosionConditionLast14Days, * erosionConditionLast14DaysDays, * erosionConditionLast14DaysMinutes, * erosionConditionMonthToDate, * erosionConditionMonthToDateDays, * erosionConditionMonthToDateMinutes, * erosionConditionMonthToDateStartTime, * erosionConditionSince12AM, * erosionConditionSince12AMMinutes, * erosionConditionSince12AMStartTime, * erosionConditionYearToDate, * erosionConditionYearToDateDays, * erosionConditionYearToDateMinutes, * erosionConditionYearToDateStartTime, * frostCondition, * frostConditionLast7Days, * frostConditionLast7DaysDays, * frostConditionLast7DaysMinutes, * frostConditionLast14Days, * frostConditionLast14DaysDays, * frostConditionLast14DaysMinutes, * frostConditionMonthToDate, * frostConditionMonthToDateDays, * frostConditionMonthToDateMinutes, * frostConditionMonthToDateStartTime, * frostConditionSince9AM, * frostConditionSince9AMMinutes, * frostConditionSince9AMStartTime, * frostConditionTo9AM, * frostConditionTo9AMMinutes, * frostConditionTo9AMStartTime, * frostConditionYearToDate, * frostConditionYearToDate, * frostConditionYearToDateMinutes, * frostConditionYearToDateStartTime, * heatCondition, * heatConditionLast7Days, * heatConditionLast7DaysDays, * heatConditionLast7DaysMinutes, * heatConditionLast14Days, * heatConditionLast14DaysDays, * heatConditionLast14DaysMinutes, * heatConditionMonthToDate, * heatConditionMonthToDateDays, * heatConditionMonthToDateMinutes, * heatConditionMonthToDateStartTime, * heatConditionSince12AM, * heatConditionSince12AMMinutes, * heatConditionSince12AMStartTime, * heatConditionYearToDate, * heatConditionYearToDateDays, * heatConditionYearToDateMinutes, and * heatConditionYearToDateStartTime ### Example 1: Get All Extremes for Northam, WA In the first example, we illustrate how to fetch all extreme values available for Northam. ``` r library(weatherOz) (extremes <- get_dpird_extremes( station_code = "NO" )) #> Key: #> station_code longitude latitude frost_condition_since9_am_minutes frost_condition_since9_am_start_time #> #> 1: NO 116.6942 -31.65161 0 #> frost_condition_to9_am_minutes frost_condition_to9_am_start_time frost_condition_last7_days_minutes #> #> 1: 0 0 #> frost_condition_last7_days_days frost_condition_last14_days_minutes frost_condition_last14_days_days #> #> 1: 0 0 0 #> frost_condition_month_to_date_minutes frost_condition_month_to_date_start_time #> #> 1: 0 #> frost_condition_month_to_date_days frost_condition_year_to_date_minutes #> #> 1: 0 1125 #> frost_condition_year_to_date_start_time frost_condition_year_to_date_days heat_condition_since12_am_minutes #> #> 1: 2024-05-23 05:59:00 9 0 #> heat_condition_since12_am_start_time heat_condition_last7_days_minutes heat_condition_last7_days_days #> #> 1: 0 0 #> heat_condition_last14_days_minutes heat_condition_last14_days_days heat_condition_month_to_date_minutes #> #> 1: 334 1 635 #> heat_condition_month_to_date_start_time heat_condition_month_to_date_days heat_condition_year_to_date_minutes #> #> 1: 2024-10-01 11:05:00 3 41714 #> heat_condition_year_to_date_start_time heat_condition_year_to_date_days erosion_condition_since12_am_minutes #> #> 1: 2024-01-01 12:06:00 96 0 #> erosion_condition_since12_am_start_time erosion_condition_last7_days_minutes erosion_condition_last7_days_days #> #> 1: 0 0 #> erosion_condition_last14_days_minutes erosion_condition_last14_days_days #> #> 1: 0 0 #> erosion_condition_month_to_date_minutes erosion_condition_month_to_date_start_time #> #> 1: 2 2024-10-01 12:27:00 #> erosion_condition_month_to_date_days erosion_condition_year_to_date_minutes #> #> 1: 1 45 #> erosion_condition_year_to_date_start_time erosion_condition_year_to_date_days #> #> 1: 2024-01-13 19:11:00 7 ``` ### Example 2: Get Selected Extremes for Northam, WA Fetch only soil erosion extreme conditions for Northam, WA. The documentation for `get_dpird_extremes()` contains a full listing of the values that are available to query from this API endpoint. ``` r library(weatherOz) ( extremes <- get_dpird_extremes( station_code = "NO", values = "erosionCondition" ) ) #> Key: #> station_code longitude latitude erosion_condition_since12_am_minutes erosion_condition_since12_am_start_time #> #> 1: NO 116.6942 -31.65161 0 #> erosion_condition_last7_days_minutes erosion_condition_last7_days_days erosion_condition_last14_days_minutes #> #> 1: 0 0 0 #> erosion_condition_last14_days_days erosion_condition_month_to_date_minutes #> #> 1: 0 2 #> erosion_condition_month_to_date_start_time erosion_condition_month_to_date_days #> #> 1: 2024-10-01 12:27:00 1 #> erosion_condition_year_to_date_minutes erosion_condition_year_to_date_start_time #> #> 1: 45 2024-01-13 19:11:00 #> erosion_condition_year_to_date_days #> #> 1: 7 ``` ## Getting Minute Data This function fetches nicely formatted minute weather station data from the DPIRD Weather 2.0 API for a maximum 24-hour period. You must provide a `station_code` and `API_key`, the other arguments, `start_date_time`, `minutes` and `values` are optional. ### Available Values for Minute Data * all (which will return all of the following values), * airTemperature, * dateTime, * dewPoint, * rainfall, * relativeHumidity, * soilTemperature, * solarIrradiance, * wetBulb, * wind, * windAvgSpeed, * windMaxSpeed, and * windMinSpeed ### Example 3: Get All Minute Data for the Past 24 Hours ``` r library(weatherOz) ( min_dat <- get_dpird_minute( station_code = "NO" ) ) #> Key: #> station_code date_time air_temperature relative_humidity soil_temperature solar_irradiance #> #> 1: NO 2024-10-20 11:02:00 24.0 43.1 27.8 564 #> 2: NO 2024-10-20 11:03:00 24.0 43.0 27.8 638 #> 3: NO 2024-10-20 11:04:00 24.0 42.6 27.8 631 #> 4: NO 2024-10-20 11:05:00 23.9 42.7 27.8 619 #> 5: NO 2024-10-20 11:06:00 23.7 42.6 27.8 665 #> --- #> 1430: NO 2024-10-21 10:51:00 19.0 35.9 25.5 1178 #> 1431: NO 2024-10-21 10:52:00 18.6 35.5 25.5 1140 #> 1432: NO 2024-10-21 10:53:00 18.3 37.2 25.5 1250 #> 1433: NO 2024-10-21 10:54:00 18.7 37.9 25.5 1248 #> 1434: NO 2024-10-21 10:55:00 19.4 35.3 25.5 1249 #> rainfall dew_point wet_bulb wind_height wind_avg_speed wind_avg_direction_compass_point #> #> 1: 0 10.7 16.7 3 9.72 NW #> 2: 0 10.7 16.7 3 9.22 W #> 3: 0 10.5 16.6 3 7.70 W #> 4: 0 10.5 16.6 3 8.21 W #> 5: 0 10.2 16.4 3 9.22 WSW #> --- #> 1430: 0 3.6 11.7 3 5.69 WNW #> 1431: 0 3.1 11.3 3 7.70 WSW #> 1432: 0 3.5 11.3 3 9.72 NW #> 1433: 0 4.1 11.7 3 6.19 WNW #> 1434: 0 3.7 11.9 3 8.21 WNW #> wind_avg_direction_degrees wind_min_speed wind_max_speed #> #> 1: 304 5.688 14.72 #> 2: 263 4.176 12.71 #> 3: 280 3.672 12.20 #> 4: 260 6.696 16.74 #> 5: 252 6.192 16.74 #> --- #> 1430: 295 3.168 8.71 #> 1431: 255 2.160 12.20 #> 1432: 306 4.176 18.25 #> 1433: 300 3.168 9.22 #> 1434: 290 4.680 11.74 ``` ### Example 4: Get Specific Time and Date Data for Specific Values If you wish to supply a specific start date and time and values, you may do so as shown here. ``` r library(weatherOz) ( min_dat_t_rad_wind <- get_dpird_minute( station_code = "NO", start_date_time = "2023-02-01 13:00:00", minutes = 1440, values = c("airTemperature", "solarIrradiance", "wind") ) ) #> Key: #> station_code date_time air_temperature solar_irradiance wind_height wind_avg_speed #> #> 1: NO 2023-02-01 13:00:00 29.7 1087 3 11.66 #> 2: NO 2023-02-01 13:00:50 29.4 1086 3 10.80 #> 3: NO 2023-02-01 13:01:40 29.5 1084 3 11.81 #> 4: NO 2023-02-01 13:02:30 29.5 1084 3 12.71 #> 5: NO 2023-02-01 13:03:20 29.6 1084 3 12.96 #> --- #> 1436: NO 2023-02-02 12:55:00 30.2 1105 3 9.54 #> 1437: NO 2023-02-02 12:55:50 30.1 1104 3 9.90 #> 1438: NO 2023-02-02 12:56:40 30.0 1102 3 13.03 #> 1439: NO 2023-02-02 12:57:30 29.9 1102 3 10.91 #> 1440: NO 2023-02-02 12:58:20 30.1 1104 3 10.40 #> wind_avg_direction_compass_point wind_avg_direction_degrees wind_min_speed wind_max_speed #> #> 1: SE 139 4.176 26.82 #> 2: SE 136 4.176 19.26 #> 3: SSE 156 6.696 19.26 #> 4: SE 133 6.696 26.82 #> 5: SE 139 6.696 19.26 #> --- #> 1436: ESE 112 4.176 16.74 #> 1437: ESE 120 4.176 19.26 #> 1438: ESE 121 4.176 24.30 #> 1439: E 93 6.696 21.78 #> 1440: E 97 4.176 16.74 ``` ## Getting Summary Data The function, `get_dpird_summary()`, fetches nicely formatted minute weather station data from the DPIRD Weather 2.0 API for a maximum 24-hour period. You must provide a `station_code` and `API_key`, the other arguments, `start_date_time`, `minutes` and `values` are optional. ### Available Values for Summary Data * all (which will return all of the following values), * airTemperature, * airTemperatureAvg, * airTemperatureMax, * airTemperatureMaxTime, * airTemperatureMin, * airTemperatureMinTime, * apparentAirTemperature, * apparentAirTemperatureAvg, * apparentAirTemperatureMax, * apparentAirTemperatureMaxTime, * apparentAirTemperatureMin, * apparentAirTemperatureMinTime, * barometricPressure, * barometricPressureAvg, * barometricPressureMax, * barometricPressureMaxTime, * barometricPressureMin, * barometricPressureMinTime, * battery, * batteryMinVoltage, * batteryMinVoltageDateTime, * chillHours, * deltaT, * deltaTAvg, * deltaTMax, * deltaTMaxTime, * deltaTMin, * deltaTMinTime, * dewPoint, * dewPointAvg, * dewPointMax, * dewPointMaxTime, * dewPointMin, * dewPointMinTime, * erosionCondition, * erosionConditionMinutes, * erosionConditionStartTime, * errors, * etoShortCrop, * etoTallCrop, * evapotranspiration, * frostCondition, * frostConditionMinutes, * frostConditionStartTime, * heatCondition, * heatConditionMinutes, * heatConditionStartTime, * observations, * observationsCount, * observationsPercentage, * panEvaporation, * rainfall, * relativeHumidity, * relativeHumidityAvg, * relativeHumidityMax, * relativeHumidityMaxTime, * relativeHumidityMin, * relativeHumidityMinTime, * richardsonUnits, * soilTemperature, * soilTemperatureAvg, * soilTemperatureMax, * soilTemperatureMaxTime, * soilTemperatureMin, * soilTemperatureMinTime, * solarExposure, * wetBulb, * wetBulbAvg, * wetBulbMax, * wetBulbMaxTime, * wetBulbMin, * wetBulbMinTime, * wind, * windAvgSpeed, and * windMaxSpeed ### What You Get Back This function returns a `data.table` with `station_code` and the date interval queried together with the requested weather variables in alphabetical order. Please note this function converts date-time columns from Coordinated Universal Time 'UTC'} to Australian Western Standard Time 'AWST'. The first ten columns will always be: * `station_code`, * `station_name`, * `longitude`, * `latitude`, * `year`, * `month`, * `day`, * `hour`, * `minute`, and if `month` or finer is present, * `date` (a combination of year, month, day, hour, minute as appropriate) ### Example 5: Get Annual Rainfall Since 2017 Use the default value for end date (current system date) to get annual rainfall since 2017 until current year for Capel. ``` r library(weatherOz) ( annual_rain <- get_dpird_summaries( station_code = "CL001", start_date = "20170101", interval = "yearly", values = "rainfall" ) ) #> Key: #> station_code station_name longitude latitude year rainfall #> #> 1: CL001 Capel 115.6376 -33.61576 2017 711.4 #> 2: CL001 Capel 115.6376 -33.61576 2018 822.0 #> 3: CL001 Capel 115.6376 -33.61576 2019 660.6 #> 4: CL001 Capel 115.6376 -33.61576 2020 862.4 #> 5: CL001 Capel 115.6376 -33.61576 2021 928.0 #> 6: CL001 Capel 115.6376 -33.61576 2022 670.4 #> 7: CL001 Capel 115.6376 -33.61576 2023 570.0 #> 8: CL001 Capel 115.6376 -33.61576 2024 757.0 ``` ### Example 6: Get Monthly Rainfall Since 2017 Use the default value for end date (current system date) to get monthly rainfall since 2017 until current year for Capel. ``` r library(weatherOz) ( monthly_rain <- get_dpird_summaries( station_code = "CL001", start_date = "20170101", interval = "monthly", values = "rainfall" ) ) #> Key: #> station_code station_name longitude latitude year month date rainfall #> #> 1: CL001 Capel 115.6376 -33.61576 2017 1 2017-01-01 0.0 #> 2: CL001 Capel 115.6376 -33.61576 2017 2 2017-02-01 0.0 #> 3: CL001 Capel 115.6376 -33.61576 2017 3 2017-03-01 59.6 #> 4: CL001 Capel 115.6376 -33.61576 2017 4 2017-04-01 0.0 #> 5: CL001 Capel 115.6376 -33.61576 2017 5 2017-05-01 84.0 #> 6: CL001 Capel 115.6376 -33.61576 2017 6 2017-06-01 57.8 #> 7: CL001 Capel 115.6376 -33.61576 2017 7 2017-07-01 194.4 #> 8: CL001 Capel 115.6376 -33.61576 2017 8 2017-08-01 175.8 #> 9: CL001 Capel 115.6376 -33.61576 2017 9 2017-09-01 49.8 #> 10: CL001 Capel 115.6376 -33.61576 2017 10 2017-10-01 34.0 #> 11: CL001 Capel 115.6376 -33.61576 2017 11 2017-11-01 14.2 #> 12: CL001 Capel 115.6376 -33.61576 2017 12 2017-12-01 41.8 #> 13: CL001 Capel 115.6376 -33.61576 2018 1 2018-01-01 14.4 #> 14: CL001 Capel 115.6376 -33.61576 2018 2 2018-02-01 0.2 #> 15: CL001 Capel 115.6376 -33.61576 2018 3 2018-03-01 15.4 #> 16: CL001 Capel 115.6376 -33.61576 2018 4 2018-04-01 42.8 #> 17: CL001 Capel 115.6376 -33.61576 2018 5 2018-05-01 115.2 #> 18: CL001 Capel 115.6376 -33.61576 2018 6 2018-06-01 168.8 #> 19: CL001 Capel 115.6376 -33.61576 2018 7 2018-07-01 214.6 #> 20: CL001 Capel 115.6376 -33.61576 2018 8 2018-08-01 156.8 #> 21: CL001 Capel 115.6376 -33.61576 2018 9 2018-09-01 29.6 #> 22: CL001 Capel 115.6376 -33.61576 2018 10 2018-10-01 45.8 #> 23: CL001 Capel 115.6376 -33.61576 2018 11 2018-11-01 11.2 #> 24: CL001 Capel 115.6376 -33.61576 2018 12 2018-12-01 7.2 #> 25: CL001 Capel 115.6376 -33.61576 2019 1 2019-01-01 6.0 #> 26: CL001 Capel 115.6376 -33.61576 2019 2 2019-02-01 0.0 #> 27: CL001 Capel 115.6376 -33.61576 2019 3 2019-03-01 29.4 #> 28: CL001 Capel 115.6376 -33.61576 2019 4 2019-04-01 33.0 #> 29: CL001 Capel 115.6376 -33.61576 2019 5 2019-05-01 27.0 #> 30: CL001 Capel 115.6376 -33.61576 2019 6 2019-06-01 239.6 #> 31: CL001 Capel 115.6376 -33.61576 2019 7 2019-07-01 85.4 #> 32: CL001 Capel 115.6376 -33.61576 2019 8 2019-08-01 117.8 #> 33: CL001 Capel 115.6376 -33.61576 2019 9 2019-09-01 45.8 #> 34: CL001 Capel 115.6376 -33.61576 2019 10 2019-10-01 67.0 #> 35: CL001 Capel 115.6376 -33.61576 2019 11 2019-11-01 7.8 #> 36: CL001 Capel 115.6376 -33.61576 2019 12 2019-12-01 1.8 #> 37: CL001 Capel 115.6376 -33.61576 2020 1 2020-01-01 2.0 #> 38: CL001 Capel 115.6376 -33.61576 2020 2 2020-02-01 31.8 #> 39: CL001 Capel 115.6376 -33.61576 2020 3 2020-03-01 40.8 #> 40: CL001 Capel 115.6376 -33.61576 2020 4 2020-04-01 41.6 #> 41: CL001 Capel 115.6376 -33.61576 2020 5 2020-05-01 156.2 #> 42: CL001 Capel 115.6376 -33.61576 2020 6 2020-06-01 132.4 #> 43: CL001 Capel 115.6376 -33.61576 2020 7 2020-07-01 125.8 #> 44: CL001 Capel 115.6376 -33.61576 2020 8 2020-08-01 96.0 #> 45: CL001 Capel 115.6376 -33.61576 2020 9 2020-09-01 110.0 #> 46: CL001 Capel 115.6376 -33.61576 2020 10 2020-10-01 32.6 #> 47: CL001 Capel 115.6376 -33.61576 2020 11 2020-11-01 88.0 #> 48: CL001 Capel 115.6376 -33.61576 2020 12 2020-12-01 5.2 #> 49: CL001 Capel 115.6376 -33.61576 2021 1 2021-01-01 0.0 #> 50: CL001 Capel 115.6376 -33.61576 2021 2 2021-02-01 76.2 #> 51: CL001 Capel 115.6376 -33.61576 2021 3 2021-03-01 27.4 #> 52: CL001 Capel 115.6376 -33.61576 2021 4 2021-04-01 92.0 #> 53: CL001 Capel 115.6376 -33.61576 2021 5 2021-05-01 160.6 #> 54: CL001 Capel 115.6376 -33.61576 2021 6 2021-06-01 81.2 #> 55: CL001 Capel 115.6376 -33.61576 2021 7 2021-07-01 187.6 #> 56: CL001 Capel 115.6376 -33.61576 2021 8 2021-08-01 90.4 #> 57: CL001 Capel 115.6376 -33.61576 2021 9 2021-09-01 93.4 #> 58: CL001 Capel 115.6376 -33.61576 2021 10 2021-10-01 109.4 #> 59: CL001 Capel 115.6376 -33.61576 2021 11 2021-11-01 5.4 #> 60: CL001 Capel 115.6376 -33.61576 2021 12 2021-12-01 4.4 #> 61: CL001 Capel 115.6376 -33.61576 2022 1 2022-01-01 0.0 #> 62: CL001 Capel 115.6376 -33.61576 2022 2 2022-02-01 4.4 #> 63: CL001 Capel 115.6376 -33.61576 2022 3 2022-03-01 4.6 #> 64: CL001 Capel 115.6376 -33.61576 2022 4 2022-04-01 44.0 #> 65: CL001 Capel 115.6376 -33.61576 2022 5 2022-05-01 105.6 #> 66: CL001 Capel 115.6376 -33.61576 2022 6 2022-06-01 103.8 #> 67: CL001 Capel 115.6376 -33.61576 2022 7 2022-07-01 169.0 #> 68: CL001 Capel 115.6376 -33.61576 2022 8 2022-08-01 121.4 #> 69: CL001 Capel 115.6376 -33.61576 2022 9 2022-09-01 69.4 #> 70: CL001 Capel 115.6376 -33.61576 2022 10 2022-10-01 29.0 #> 71: CL001 Capel 115.6376 -33.61576 2022 11 2022-11-01 18.0 #> 72: CL001 Capel 115.6376 -33.61576 2022 12 2022-12-01 1.2 #> 73: CL001 Capel 115.6376 -33.61576 2023 1 2023-01-01 0.8 #> 74: CL001 Capel 115.6376 -33.61576 2023 2 2023-02-01 0.0 #> 75: CL001 Capel 115.6376 -33.61576 2023 3 2023-03-01 27.8 #> 76: CL001 Capel 115.6376 -33.61576 2023 4 2023-04-01 81.2 #> 77: CL001 Capel 115.6376 -33.61576 2023 5 2023-05-01 31.8 #> 78: CL001 Capel 115.6376 -33.61576 2023 6 2023-06-01 130.0 #> 79: CL001 Capel 115.6376 -33.61576 2023 7 2023-07-01 123.2 #> 80: CL001 Capel 115.6376 -33.61576 2023 8 2023-08-01 74.8 #> 81: CL001 Capel 115.6376 -33.61576 2023 9 2023-09-01 80.2 #> 82: CL001 Capel 115.6376 -33.61576 2023 10 2023-10-01 17.2 #> 83: CL001 Capel 115.6376 -33.61576 2023 11 2023-11-01 2.4 #> 84: CL001 Capel 115.6376 -33.61576 2023 12 2023-12-01 0.6 #> 85: CL001 Capel 115.6376 -33.61576 2024 1 2024-01-01 1.4 #> 86: CL001 Capel 115.6376 -33.61576 2024 2 2024-02-01 0.6 #> 87: CL001 Capel 115.6376 -33.61576 2024 3 2024-03-01 0.2 #> 88: CL001 Capel 115.6376 -33.61576 2024 4 2024-04-01 0.0 #> 89: CL001 Capel 115.6376 -33.61576 2024 5 2024-05-01 60.6 #> 90: CL001 Capel 115.6376 -33.61576 2024 6 2024-06-01 202.2 #> 91: CL001 Capel 115.6376 -33.61576 2024 7 2024-07-01 182.8 #> 92: CL001 Capel 115.6376 -33.61576 2024 8 2024-08-01 226.8 #> 93: CL001 Capel 115.6376 -33.61576 2024 9 2024-09-01 34.0 #> 94: CL001 Capel 115.6376 -33.61576 2024 10 2024-10-01 48.4 #> station_code station_name longitude latitude year month date rainfall ``` ### Example 7: Get Daily Rainfall and Wind From Beginning of 2017 to End of 2018 Use the default value for end date (current system date) to get daily rainfall and wind records from 2017-01-01 to 2018-12-31 for Binnu. Note that the Binnu station has two wind heights, 3m and 10m. ``` r library(weatherOz) ( daily_wind_rain <- get_dpird_summaries( station_code = "BI", start_date = "20170101", end_date = "2018-12-31", interval = "daily", values = c("rainfall", "wind") ) ) #> Key: #> station_code station_name longitude latitude year month day date rainfall wind_avg_speed #> #> 1: BI Binnu 114.6958 -28.051 2017 1 1 2017-01-01 0 17.61 #> 2: BI Binnu 114.6958 -28.051 2017 1 1 2017-01-01 0 20.25 #> 3: BI Binnu 114.6958 -28.051 2017 1 2 2017-01-02 0 23.30 #> 4: BI Binnu 114.6958 -28.051 2017 1 2 2017-01-02 0 25.59 #> 5: BI Binnu 114.6958 -28.051 2017 1 3 2017-01-03 0 16.89 #> --- #> 1456: BI Binnu 114.6958 -28.051 2018 12 29 2018-12-29 0 26.38 #> 1457: BI Binnu 114.6958 -28.051 2018 12 30 2018-12-30 0 17.37 #> 1458: BI Binnu 114.6958 -28.051 2018 12 30 2018-12-30 0 19.32 #> 1459: BI Binnu 114.6958 -28.051 2018 12 31 2018-12-31 0 22.30 #> 1460: BI Binnu 114.6958 -28.051 2018 12 31 2018-12-31 0 24.58 #> wind_height wind_max_direction_compass_point wind_max_direction_degrees wind_max_speed wind_max_time #> #> 1: 3 SW 220 42.73 2017-01-01 17:56:00 #> 2: 3 SSW 200 42.73 2018-01-01 17:25:00 #> 3: 10 ESE 104 46.30 2017-01-01 08:08:00 #> 4: 10 SSW 208 44.64 2018-01-01 17:42:00 #> 5: 3 SSW 198 47.77 2017-01-02 17:02:00 #> --- #> 1456: 10 SSW 193 50.15 2018-12-30 16:13:00 #> 1457: 3 SSW 201 47.77 2017-12-31 16:41:00 #> 1458: 3 SSW 196 41.90 2018-12-31 17:13:00 #> 1459: 10 SSW 198 51.73 2017-12-31 16:19:00 #> 1460: 10 SSW 197 44.78 2018-12-31 18:12:00 ``` ### Example 8: Get Hourly Rainfall and Wind From Beginning of 2022 to Current Use the default value for end date (current system date) to get hourly rainfall and wind records from 2022-01-01 to Current Date for Binnu. Note that the Binnu station has two wind heights, 3m and 10m. ``` r library(weatherOz) ( hourly_wind_rain <- get_dpird_summaries( station_code = "BI", start_date = "20220101", interval = "hourly", values = c("rainfall", "wind") ) ) #> Key: #> station_code station_name longitude latitude year month day hour date rainfall #> #> 1: BI Binnu 114.6958 -28.051 2022 1 1 0 2022-01-01 00:00:00 0.0 #> 2: BI Binnu 114.6958 -28.051 2022 1 1 0 2022-01-01 00:00:00 0.0 #> 3: BI Binnu 114.6958 -28.051 2022 1 1 1 2022-01-01 01:00:00 0.0 #> 4: BI Binnu 114.6958 -28.051 2022 1 1 1 2022-01-01 01:00:00 0.0 #> 5: BI Binnu 114.6958 -28.051 2022 1 1 2 2022-01-01 02:00:00 0.0 #> --- #> 49150: BI Binnu 114.6958 -28.051 2024 10 20 22 2024-10-20 22:00:00 0.0 #> 49151: BI Binnu 114.6958 -28.051 2024 10 20 23 2024-10-20 23:00:00 0.0 #> 49152: BI Binnu 114.6958 -28.051 2024 10 20 23 2024-10-20 23:00:00 0.0 #> 49153: BI Binnu 114.6958 -28.051 2024 10 21 0 2024-10-21 00:00:00 0.2 #> 49154: BI Binnu 114.6958 -28.051 2024 10 21 0 2024-10-21 00:00:00 0.2 #> wind_avg_direction_compass_point wind_avg_direction_degrees wind_avg_speed wind_height #> #> 1: S 190 16.66 3 #> 2: E 97 16.36 10 #> 3: S 189 22.23 10 #> 4: ESE 102 11.37 3 #> 5: S 190 22.65 3 #> --- #> 49150: SSW 202 19.56 10 #> 49151: ESE 107 15.94 10 #> 49152: SSW 201 15.56 3 #> 49153: E 101 9.98 3 #> 49154: SSW 193 21.49 10 #> wind_max_direction_compass_point wind_max_direction_degrees wind_max_speed wind_max_time #> #> 1: S 184 30.13 2021-12-31 23:58:00 #> 2: E 99 20.23 2023-05-27 23:55:00 #> 3: S 180 32.08 2021-12-31 23:58:00 #> 4: E 99 17.57 2023-05-28 00:44:00 #> 5: SSW 192 32.65 2022-01-01 00:29:00 #> --- #> 49150: SSW 206 33.12 2024-10-20 22:09:00 #> 49151: E 97 21.46 2023-05-27 22:41:00 #> 49152: SSW 196 29.16 2024-10-21 00:00:00 #> 49153: E 98 15.88 2023-05-27 23:25:00 #> 49154: SSW 198 42.41 2024-10-20 23:57:00 ``` ## Getting APSIM-ready Data For work with APSIM, you can use `get_dpird_apsim()` to get an object of DPIRD weather data in your R session that's ready for saving using `write_apsim_met()`, which is re-exported from the CRAN package [apsimx] for your convenience. This function only needs the `station_code`, `start_date`, `end_date` and your `api_key` values to return the necessary values. ### What You Get Back An object of {apsimx} 'met' class, compatible with a `data.frame`, that has daily data that include year, day, radiation, max temperature, min temperature, rainfall, relative humidity, evaporation and windspeed. ### Example 9: Get APSIM Formatted Data for Binnu From 2022-04-01 to 2022-11-01 ``` r library(weatherOz) ( binnu <- get_dpird_apsim( station_code = "BI", start_date = "20220101", end_date = "20221231" ) ) #> weather.met.met #> site = Binnu #> latitude = -28.051 #> longitude = 114.69575 #> tav = 20.5987671232877 (oC) ! calculated annual average ambient temperature 2024-10-21 11:02:58.339889 #> amp = 15.3 !calculated with the apsimx R package: 2024-10-21 11:02:58.3442 #> year day radn maxt mint rain evap rh windspeed #> () () (MJ/m2/day) (oC) (oC) (mm) (mm) (%) (m/s) #> year day radn maxt mint rain evap rh windspeed #> 1 2022 1 33137.3 35.3 18.5 10.6 0 63.9 20.52 #> 2 2022 2 33419.1 38.3 15.2 11.1 0 54.6 15.03 #> 3 2022 3 33467.9 34.8 17.1 11.0 0 65.6 18.62 #> 4 2022 4 32784.2 39.9 17.6 11.2 0 64.2 18.44 #> 5 2022 5 32981.1 45.7 19.1 14.4 0 37.1 18.09 #> 6 2022 6 33182.6 39.1 18.3 11.3 0 60.5 18.37 #> Warning in check_apsim_met(x): Radiation is greater than 40 (MJ/m2/day) #> weather.met.met #> site = Binnu #> latitude = -28.051 #> longitude = 114.69575 #> tav = 20.5987671232877 (oC) ! calculated annual average ambient temperature 2024-10-21 11:02:58.339889 #> amp = 15.3 !calculated with the apsimx R package: 2024-10-21 11:02:58.3442 #> year day radn maxt mint rain evap rh windspeed #> () () (MJ/m2/day) (oC) (oC) (mm) (mm) (%) (m/s) #> year day radn maxt mint rain evap rh windspeed #> 1 2022 1 33137.3 35.3 18.5 10.6 0 63.9 20.52 #> 2 2022 2 33419.1 38.3 15.2 11.1 0 54.6 15.03 #> 3 2022 3 33467.9 34.8 17.1 11.0 0 65.6 18.62 #> 4 2022 4 32784.2 39.9 17.6 11.2 0 64.2 18.44 #> 5 2022 5 32981.1 45.7 19.1 14.4 0 37.1 18.09 #> 6 2022 6 33182.6 39.1 18.3 11.3 0 60.5 18.37 ``` ## Working With DPIRD Metadata Three functions are provided to assist in fetching metadata about the stations. * `find_nearby_stations()`, which returns a `data.table` with the nearest weather stations to a given geographic point or known station in either the DPIRD or BOM (from SILO) networks. * `find_stations_in()`, which returns a `data.table` with the weather stations falling within a given geographic area in either the DPIRD or BOM (from SILO) networks. * `get_dpird_availability()`, which returns a `data.table` with the availability for weather stations in the DPIRD network providing the up time and data availability for a given period of time. * `get_stations_metadata()`, which returns a `data.table` with the latest and most up-to-date information available from the Weather 2.0 API on the stations' geographic locations, hardware details, *e.g.,* wind mast height, and recording capabilities. ### Finding Nearby Stations ### Example 10: Finding Stations Nearby a Known Station Query WA only stations and return DPIRD's stations nearest to the Northam, WA station, "NO", returning stations with 50 km of this station. ``` r library(weatherOz) ( wa_stn <- find_nearby_stations( station_code = "NO", distance_km = 50, which_api = "dpird" ) ) #> station_code station_name longitude latitude state elev_m #> #> 1: NO Northam 116.6942 -31.65161 WA 163 #> 2: MK Muresk 116.6913 -31.72772 WA 251 #> 3: YE001 York East 116.9211 -31.83588 WA 229 #> 4: BTSB DFES-B Talbot West 116.6898 -31.96060 WA 352 #> owner distance_km #> #> 1: WA Department of Primary Industries and Regional Development (DPIRD) 0.00 #> 2: WA Department of Primary Industries and Regional Development (DPIRD) 7.62 #> 3: WA Department of Primary Industries and Regional Development (DPIRD) 29.23 #> 4: WA Department of Fire and Emergency Services (DFES) 30.90 ``` ### Example 11: Finding Stations Nearby a Given Longitude and Latitude Using the longitude and latitude for Northam, WA, find all DPIRD stations within a 50km radius of this geographic point. ``` r library(weatherOz) ( wa_stn_lonlat <- find_nearby_stations( longitude = 116.6620, latitude = -31.6540, distance_km = 50, which_api = "dpird" ) ) #> station_code station_name longitude latitude state elev_m #> #> 1: NO Northam 116.6942 -31.65161 WA 163 #> 2: MK Muresk 116.6913 -31.72772 WA 251 #> 3: BTSB DFES-B Talbot West 116.6898 -31.96060 WA 352 #> 4: YE001 York East 116.9211 -31.83588 WA 229 #> owner distance_km #> #> 1: WA Department of Primary Industries and Regional Development (DPIRD) 3.23 #> 2: WA Department of Primary Industries and Regional Development (DPIRD) 7.93 #> 3: WA Department of Fire and Emergency Services (DFES) 30.79 #> 4: WA Department of Primary Industries and Regional Development (DPIRD) 31.65 ``` ### Example 12: Finding Stations in Both the DPIRD and SILO Data Sets Query stations nearest DPIRD's Northam, WA station, "NO" and return both DPIRD and SILO/BOM stations within 50 km of this station. ``` r library(weatherOz) ( wa_stn_all <- find_nearby_stations( station_code = "NO", distance_km = 50, which_api = "all" ) ) #> station_code station_name longitude latitude state elev_m #> #> 1: NO Northam 116.6942 -31.65161 WA 163 #> 2: 010111 Northam 116.6586 -31.65080 WA 170 #> 3: MK Muresk 116.6913 -31.72772 WA 251 #> 4: 010150 Grass Valley 116.7969 -31.63580 WA 200 #> 5: 010152 Muresk Institute 116.6833 -31.75000 WA 166 #> 6: 010115 Quellington 116.8647 -31.77140 WA 220 #> 7: 010125 Toodyay 116.4703 -31.55170 WA 140 #> 8: 010244 Bakers Hill 116.4561 -31.74690 WA 330 #> 9: 010311 York 116.7650 -31.89970 WA 179 #> 10: 010023 Warradong Farm 116.9411 -31.50030 WA 240 #> 11: YE001 York East 116.9211 -31.83588 WA 229 #> 12: 010091 Meckering 117.0081 -31.63220 WA 195 #> 13: BTSB DFES-B Talbot West 116.6898 -31.96060 WA 352 #> 14: 010138 Wooroloo 116.3413 -31.81500 WA 277 #> 15: 010058 Goomalling 116.8269 -31.29940 WA 239 #> 16: 010134 Wattening 116.5150 -31.31190 WA 240 #> 17: 010165 Green Hills 116.9839 -31.94080 WA 244 #> 18: 010163 Jaroma 117.1433 -31.77060 WA 265 #> 19: 010009 Bolgart 116.5092 -31.27440 WA 240 #> 20: 010160 Quella Park 117.1194 -31.45330 WA 265 #> 21: 009007 Chidlow 116.2658 -31.86220 WA 300 #> 22: 010120 Doodenanning 117.0986 -31.90920 WA 290 #> 23: 009066 Gidgegannup 116.1976 -31.79060 WA 290 #> station_code station_name longitude latitude state elev_m #> owner distance_km #> #> 1: WA Department of Primary Industries and Regional Development (DPIRD) 0.000000 #> 2: BOM 3.369959 #> 3: WA Department of Primary Industries and Regional Development (DPIRD) 7.620000 #> 4: BOM 9.878912 #> 5: BOM 10.986728 #> 6: BOM 20.914807 #> 7: BOM 23.934879 #> 8: BOM 24.889495 #> 9: BOM 28.381350 #> 10: BOM 28.808439 #> 11: WA Department of Primary Industries and Regional Development (DPIRD) 29.230000 #> 12: BOM 29.790490 #> 13: WA Department of Fire and Emergency Services (DFES) 30.900000 #> 14: BOM 37.993263 #> 15: BOM 41.128932 #> 16: BOM 41.412805 #> 17: BOM 42.226585 #> 18: BOM 44.489821 #> 19: BOM 45.457855 #> 20: BOM 45.923973 #> 21: BOM 46.778842 #> 22: BOM 47.759247 #> 23: BOM 49.440793 #> owner distance_km ``` ### Example 13: Finding Stations in the Southwest Agriculture Region of Western Australia Using `find_stations_in()` is different than `find_nearby_stations()` as it finds any stations that fall within a boundary that you provide rather than using a single point to search from. For detailed examples using named places or bounding boxes, see the "weatherOz for SILO" vignette. The {sf} object, `south_west_agricultural_region`, is provided with {weatherOz} under the [CC BY 4.0 Licence](https://creativecommons.org/licenses/by/4.0/deed.en) from the Department of Primary Industries and Regional Development (DPIRD), so we can extract stations within this area of Western Australia. First, we can plot the `south_west_agricultural_region` to see what it looks like. ``` r library(weatherOz) library(ggplot2) library(ggthemes) library(sf) #> Linking to GEOS 3.11.0, GDAL 3.5.3, PROJ 9.1.0; sf_use_s2() is TRUE ggplot(south_west_agricultural_region) + geom_sf() + theme_map() ```
plot of chunk view_sw_ag_region

plot of chunk view_sw_ag_region

Now we can use that to find stations that fall only within that part of Western Australia. We'll use the coordinate reference system (CRS) provided by this {sf} object and find all stations, including those that have closed. ``` r sw_wa <- find_stations_in( x = south_west_agricultural_region, include_closed = TRUE, crs = sf::st_crs(south_west_agricultural_region) ) sw_wa #> station_code station_name start end latitude longitude state elev_m #> #> 1: 009804 Adina 1969-01-01 2024-10-21 -33.88110 122.2167 WA 60 #> 2: 008000 Ajana 1917-01-01 2024-10-21 -27.96070 114.6336 WA 210 #> 3: 009500 Albany 1877-01-01 2024-10-21 -35.02890 117.8808 WA 3 #> 4: 009741 Albany Airport Comparison 1942-01-01 2014-01-01 -34.94140 117.8022 WA 68 #> 5: 010501 Aldersyde Post Office 1909-01-01 1976-01-01 -32.36670 117.2833 WA NA #> --- #> 1033: 008146 Ytiniche 1913-01-01 2024-10-21 -30.07060 116.2092 WA 300 #> 1034: 008147 Yuna 1909-01-01 2024-10-21 -28.32500 114.9589 WA 270 #> 1035: YU001 Yuna 2012-06-21 2024-10-21 -28.33763 114.9898 WA 329 #> 1036: YU002 Yuna NE 2016-03-24 2024-10-21 -28.20032 115.2616 WA 267 #> 1037: YU003 Yuna North 2018-08-08 2024-10-21 -28.12086 114.9626 WA 264 #> source status wmo #> #> 1: Bureau of Meteorology (BOM) open NA #> 2: Bureau of Meteorology (BOM) open NA #> 3: Bureau of Meteorology (BOM) open 94801 #> 4: Bureau of Meteorology (BOM) closed 95802 #> 5: Bureau of Meteorology (BOM) closed NA #> --- #> 1033: Bureau of Meteorology (BOM) open NA #> 1034: Bureau of Meteorology (BOM) open NA #> 1035: WA Department of Primary Industries and Regional Development (DPIRD) open NA #> 1036: WA Department of Primary Industries and Regional Development (DPIRD) open NA #> 1037: WA Department of Primary Industries and Regional Development (DPIRD) open NA ``` We need to convert the `sw_wa` object from a `data.table` to an `sf` object and transform it to use the same CRS as the `south_west_agricultural_region` object to map the results. ``` r sw_wa <- st_as_sf( x = sw_wa, coords = c("longitude", "latitude"), crs = "EPSG:4326" ) sw_wa <- st_transform(x = sw_wa, crs = st_crs(south_west_agricultural_region)) ``` Now we can use {ggplot2} to plot the stations indicating whether they are still open or they are closed. ``` r ggplot(south_west_agricultural_region) + geom_sf(fill = "white") + geom_sf(data = sw_wa, alpha = 0.65, size = 2, aes(colour = status)) + theme_map() ```
plot of chunk plot_sw_land_div_map

plot of chunk plot_sw_land_div_map

### Checking Station Uptime or Availability ### Example 14: Checking Station Availability for Current Year Check the availability of the Westonia station since the start of the current year using the default functionality with no `start_date` or `end_date`. ``` r library(weatherOz) (WS001 <- get_dpird_availability( station_code = "WS001" )) #> Key: #> station_code station_name to9_am since9_am since12_am current_hour last24_hours last7_days_since9_am #> #> 1: WS001 Westonia 100 95.8 99.2 100 99.6 99.9 #> last7_days_since12_am last14_days_since9_am last14_days_since12_am month_to_date_to9_am #> #> 1: 99.9 100 100 100 #> month_to_date_since12_am year_to_date_to9_am year_to_date_since12_am #> #> 1: 100 100 100 ``` ### Example 15: Checking Station Availability for a Set Time Period Check the availability of the Binnu station for January of 2018. When a custom `start_date` is provided an `end_date` must also be provided. ``` r library(weatherOz) ( BI_201801 <- get_dpird_availability( station_code = "BI", start_date = "2018-01-01", end_date = "2018-01-31" ) ) #> Key: #> station_code station_name start_date end_date availability_since_9_am availability_since_12_am #> #> 1: BI Binnu 2018-01-01 2018-01-31 100 100 ``` ### Getting Station Metadata for the DPIRD Network Stations The `get_stations_metadata()` function is shared with the SILO functions as well, so this function will retrieve data from both weather APIs. Shown here is how to use it for DPIRD data only and with an example of DPIRD specific information, namely including closed stations and rich metadata. ### Example 16: Get DPIRD Station Metadata The `get_stations_metadata()` function allows you to get details about the stations themselves for stations in the DPIRD and SILO (BOM) networks in one function. Here we demonstrate how to get the metadata for the DPIRD stations only. ``` r library(weatherOz) (metadata <- get_stations_metadata(which_api = "dpird")) #> station_code station_name start end latitude longitude state elev_m #> #> 1: AN001 Allanooka 2012-06-19 2024-10-21 -29.06361 114.9972 WA 131 #> 2: AM001 Amelup 2019-10-09 2024-10-21 -34.27083 118.2685 WA 200 #> 3: SH002 Babakin 2016-06-22 2024-10-21 -32.12548 118.0041 WA 313 #> 4: BA Badgingarra 2008-11-19 2024-10-21 -30.33805 115.5395 WA 284 #> 5: BP001 Balingup 2014-10-24 2024-10-21 -33.79620 116.0640 WA 227 #> --- #> 219: YS Yilgarn 2008-11-01 2024-10-21 -31.91562 119.2561 WA 468 #> 220: YE001 York East 2013-11-08 2024-10-21 -31.83588 116.9211 WA 229 #> 221: YU001 Yuna 2012-06-21 2024-10-21 -28.33763 114.9898 WA 329 #> 222: YU002 Yuna NE 2016-03-24 2024-10-21 -28.20032 115.2616 WA 267 #> 223: YU003 Yuna North 2018-08-08 2024-10-21 -28.12086 114.9626 WA 264 #> source status wmo #> #> 1: WA Department of Primary Industries and Regional Development (DPIRD) open NA #> 2: WA Department of Primary Industries and Regional Development (DPIRD) open NA #> 3: WA Department of Primary Industries and Regional Development (DPIRD) open NA #> 4: WA Department of Primary Industries and Regional Development (DPIRD) open NA #> 5: WA Department of Primary Industries and Regional Development (DPIRD) open NA #> --- #> 219: WA Department of Primary Industries and Regional Development (DPIRD) open NA #> 220: WA Department of Primary Industries and Regional Development (DPIRD) open NA #> 221: WA Department of Primary Industries and Regional Development (DPIRD) open NA #> 222: WA Department of Primary Industries and Regional Development (DPIRD) open NA #> 223: WA Department of Primary Industries and Regional Development (DPIRD) open NA ``` ### Example 17: Get Rich DPIRD Station Metadata and Include Closed Stations You can fetch additional information about the DPIRD stations as well as getting data for stations that are no longer open like so with the `rich` and `include_closed` arguments set to `TRUE`. ``` r library(weatherOz) (metadata <- get_stations_metadata(which_api = "dpird", include_closed = TRUE, rich = TRUE)) #> station_code station_name start end latitude longitude state elev_m #> #> 1: AN001 Allanooka 2012-06-19 2024-10-21 -29.06361 114.9972 WA 131 #> 2: AM001 Amelup 2019-10-09 2024-10-21 -34.27083 118.2685 WA 200 #> 3: SH002 Babakin 2016-06-22 2024-10-21 -32.12548 118.0041 WA 313 #> 4: BA Badgingarra 2008-11-19 2024-10-21 -30.33805 115.5395 WA 284 #> 5: BP001 Balingup 2014-10-24 2024-10-21 -33.79620 116.0640 WA 227 #> --- #> 234: YS Yilgarn 2008-11-01 2024-10-21 -31.91562 119.2561 WA 468 #> 235: YE001 York East 2013-11-08 2024-10-21 -31.83588 116.9211 WA 229 #> 236: YU001 Yuna 2012-06-21 2024-10-21 -28.33763 114.9898 WA 329 #> 237: YU002 Yuna NE 2016-03-24 2024-10-21 -28.20032 115.2616 WA 267 #> 238: YU003 Yuna North 2018-08-08 2024-10-21 -28.12086 114.9626 WA 264 #> source status wmo probe_height #> #> 1: WA Department of Primary Industries and Regional Development (DPIRD) open NA 1.25 #> 2: WA Department of Primary Industries and Regional Development (DPIRD) open NA 1.25 #> 3: WA Department of Primary Industries and Regional Development (DPIRD) open NA 1.25 #> 4: WA Department of Primary Industries and Regional Development (DPIRD) open NA 1.25 #> 5: WA Department of Primary Industries and Regional Development (DPIRD) open NA 1.25 #> --- #> 234: WA Department of Primary Industries and Regional Development (DPIRD) open NA 1.25 #> 235: WA Department of Primary Industries and Regional Development (DPIRD) open NA 1.25 #> 236: WA Department of Primary Industries and Regional Development (DPIRD) open NA 1.25 #> 237: WA Department of Primary Industries and Regional Development (DPIRD) open NA 1.25 #> 238: WA Department of Primary Industries and Regional Development (DPIRD) open NA 1.25 #> rain_gauge_height wind_probe_heights air_temperature battery_voltage delta_t dew_point pan_evaporation #> #> 1: 0.5 3 TRUE TRUE TRUE TRUE TRUE #> 2: 1.0 3 TRUE TRUE TRUE TRUE TRUE #> 3: 0.5 3 TRUE TRUE TRUE TRUE TRUE #> 4: 0.5 3 TRUE TRUE TRUE TRUE TRUE #> 5: 0.5 3 TRUE TRUE TRUE TRUE TRUE #> --- #> 234: 0.5 3 TRUE TRUE TRUE TRUE TRUE #> 235: 0.5 3 TRUE TRUE TRUE TRUE TRUE #> 236: 0.5 3 TRUE TRUE TRUE TRUE TRUE #> 237: 0.5 3 TRUE TRUE TRUE TRUE TRUE #> 238: 0.5 3 TRUE TRUE TRUE TRUE TRUE #> relative_humidity barometric_pressure rainfall soil_temperature solar_irradiance wet_bulb wind1 wind2 #> #> 1: TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE #> 2: TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE #> 3: TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE #> 4: TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE #> 5: TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE #> --- #> 234: TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE #> 235: TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE #> 236: TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE #> 237: TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE #> 238: TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE #> wind3 apparent_temperature eto_short eto_tall frost_condition heat_condition wind_erosion_condition #> #> 1: FALSE TRUE TRUE TRUE TRUE TRUE TRUE #> 2: FALSE TRUE TRUE TRUE TRUE TRUE TRUE #> 3: FALSE TRUE TRUE TRUE TRUE TRUE TRUE #> 4: FALSE TRUE TRUE TRUE TRUE TRUE TRUE #> 5: FALSE TRUE TRUE TRUE TRUE TRUE TRUE #> --- #> 234: FALSE TRUE TRUE TRUE TRUE TRUE TRUE #> 235: FALSE TRUE TRUE TRUE TRUE TRUE TRUE #> 236: FALSE TRUE TRUE TRUE TRUE TRUE TRUE #> 237: FALSE TRUE TRUE TRUE TRUE TRUE TRUE #> 238: FALSE TRUE TRUE TRUE TRUE TRUE TRUE #> richardson_unit chill_hour #> #> 1: TRUE TRUE #> 2: TRUE TRUE #> 3: TRUE TRUE #> 4: TRUE TRUE #> 5: TRUE TRUE #> --- #> 234: TRUE TRUE #> 235: TRUE TRUE #> 236: TRUE TRUE #> 237: TRUE TRUE #> 238: TRUE TRUE ```