Package: chopin 0.9.0

Insang Song

chopin: Computation of Spatial Data by Hierarchical and Objective Partitioning of Inputs for Parallel Processing

Geospatial data computation is parallelized by grid, hierarchy, or raster files. Based on future and mirai parallel backends, terra and sf functions as well as convenience functions in the package can be distributed over multiple threads. The simplest way of parallelizing generic geospatial computation is to start from `par_pad_*` functions to `par_grid`, `par_hierarchy`, or `par_multirasters` functions. Virtually any functions accepting classes in terra or sf packages can be used in the three parallelization functions. A common raster-vector overlay operation is provided as a function `extract_at`, which uses exactextractr, with options for kernel weights for summarizing raster values at vector geometries. Other convenience functions for vector-vector operations including simple areal interpolation (`summarize_aw`) and summation of exponentially decaying weights (`summarize_sedc`) are also provided.

Authors:Insang Song [aut, cre], Kyle Messier [aut, ctb], Alec L. Robitaille [rev], Eric R. Scott [rev]

chopin_0.9.0.tar.gz
chopin_0.9.0.zip(r-4.5)chopin_0.9.0.zip(r-4.4)chopin_0.9.0.zip(r-4.3)
chopin_0.9.0.tgz(r-4.4-any)chopin_0.9.0.tgz(r-4.3-any)
chopin_0.9.0.tar.gz(r-4.5-noble)chopin_0.9.0.tar.gz(r-4.4-noble)
chopin_0.9.0.tgz(r-4.4-emscripten)chopin_0.9.0.tgz(r-4.3-emscripten)
chopin.pdf |chopin.html
chopin/json (API)
NEWS

# Install 'chopin' in R:
install.packages('chopin', repos = c('https://ropensci.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/ropensci/chopin/issues

Pkgdown site:https://docs.ropensci.org

Datasets:
  • ncpoints - Mildly clustered points in North Carolina, United States
  • prediction_grid - Regular grid points in the mainland United States at 1km spatial resolution

On CRAN:

6.14 score 12 stars 22 scripts 15 exports 51 dependencies

Last updated 2 months agofrom:42799ee62c (on main). Checks:7 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKNov 20 2024
R-4.5-winOKNov 20 2024
R-4.5-linuxOKNov 20 2024
R-4.4-winOKNov 20 2024
R-4.4-macOKNov 20 2024
R-4.3-winOKNov 20 2024
R-4.3-macOKNov 20 2024

Exports:extract_atkernelfunctionpar_convert_fpar_gridpar_grid_miraipar_hierarchypar_hierarchy_miraipar_merge_gridpar_multirasterspar_multirasters_miraipar_pad_balancedpar_pad_gridpar_split_listsummarize_awsummarize_sedc

Dependencies:abindanticlustclassclassIntclicodetoolscollapsecpp11DBIdigestdplyre1071exactextractrfansifuturefuture.applygenericsglobalsglueigraphKernSmoothlatticelifecyclelistenvlpSolvemagrittrMASSMatrixmirainanonextparallellypillarpkgconfigproxyR6RANNrasterRcpprlangs2sfspstarsterratibbletidyselectunitsutf8vctrswithrwk

Extracting Weather/Climate Geospatial Data with chopin

Rendered fromv04_climate_examples.Rmdusingknitr::rmarkdownon Nov 20 2024.

Last update: 2024-09-11
Started: 2024-08-09

Generate computational grids

Rendered fromv03_par_pad_grid.Rmdusingknitr::rmarkdownon Nov 20 2024.

Last update: 2024-09-08
Started: 2024-08-09

Getting started with chopin

Rendered fromv01_start.Rmdusingknitr::rmarkdownon Nov 20 2024.

Last update: 2024-10-12
Started: 2024-08-09

Good practice of using chopin

Rendered fromv02_good_practice.Rmdusingknitr::rmarkdownon Nov 20 2024.

Last update: 2024-09-08
Started: 2024-08-09

targets and grid objects

Rendered fromv05_targets.Rmdusingknitr::rmarkdownon Nov 20 2024.

Last update: 2024-08-09
Started: 2024-08-09