Package: pathviewr 1.1.7
pathviewr: Wrangle, Analyze, and Visualize Animal Movement Data
Tools to import, clean, and visualize movement data, particularly from motion capture systems such as Optitrack's 'Motive', the Straw Lab's 'Flydra', or from other sources. We provide functions to remove artifacts, standardize tunnel position and tunnel axes, select a region of interest, isolate specific trajectories, fill gaps in trajectory data, and calculate 3D and per-axis velocity. For experiments of visual guidance, we also provide functions that use subject position to estimate perception of visual stimuli.
Authors:
pathviewr_1.1.7.tar.gz
pathviewr_1.1.7.zip(r-4.5)pathviewr_1.1.7.zip(r-4.4)pathviewr_1.1.7.zip(r-4.3)
pathviewr_1.1.7.tgz(r-4.4-any)pathviewr_1.1.7.tgz(r-4.3-any)
pathviewr_1.1.7.tar.gz(r-4.5-noble)pathviewr_1.1.7.tar.gz(r-4.4-noble)
pathviewr_1.1.7.tgz(r-4.4-emscripten)pathviewr_1.1.7.tgz(r-4.3-emscripten)
pathviewr.pdf |pathviewr.html✨
pathviewr/json (API)
NEWS
# Install 'pathviewr' in R: |
install.packages('pathviewr', repos = c('https://ropensci.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/ropensci/pathviewr/issues
Pkgdown site:https://docs.ropensci.org
animal-movementflydramotionmovement-dataoptitracktrajectoriestrajectory-analysisvisual-guidancevisual-perception
Last updated 2 years agofrom:e591cb8881 (on master). Checks:7 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Dec 27 2024 |
R-4.5-win | OK | Dec 27 2024 |
R-4.5-linux | OK | Dec 27 2024 |
R-4.4-win | OK | Dec 27 2024 |
R-4.4-mac | OK | Dec 27 2024 |
R-4.3-win | OK | Dec 27 2024 |
R-4.3-mac | OK | Dec 27 2024 |
Exports:%>%as_viewrbind_viewr_objectscalc_min_dist_boxcalc_min_dist_vclean_by_spanclean_viewrclean_viewr_batchdeg_2_radexclude_by_velocityfill_traj_gapsfind_curve_elbowgather_tunnel_dataget_2d_angleget_3d_angleget_3d_cross_prodget_dist_point_lineget_full_trajectoriesget_header_viewrget_sfget_traj_velocitiesget_velocityget_vis_angleimport_and_clean_batchimport_and_clean_viewrimport_batchinsert_treatmentsplot_by_subjectplot_viewr_trajectoriesquick_separate_trajectoriesrad_2_degread_flydra_matread_motive_csvredefine_tunnel_centerrelabel_viewr_axesremove_duplicate_framesrename_viewr_charactersrescale_tunnel_datarm_by_trajnumrotate_tunnelsection_tunnel_byselect_x_percentseparate_trajectoriesset_traj_frametimestandardize_tunneltrim_tunnel_outliersvisualize_frame_gap_choice
Dependencies:clicolorspacecowplotcpp11data.tabledplyrfANCOVAfansifarvergenericsggplot2gluegtableisobandlabelinglatticelifecyclelubridatemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigpurrrR.matlabR.methodsS3R.ooR.utilsR6RColorBrewerrlangscalesstringistringrtibbletidyrtidyselecttimechangeutf8vctrsviridisLitewithr
Basics of data import and cleaning in pathviewr
Rendered fromdata-import-cleaning.Rmd
usingknitr::rmarkdown
on Dec 27 2024.Last update: 2021-04-19
Started: 2020-07-27
Estimating visual perceptions from tracking data
Rendered fromvisual-perception-functions.Rmd
usingknitr::rmarkdown
on Dec 27 2024.Last update: 2022-08-21
Started: 2020-09-21
Managing frame gaps with pathviewr
Rendered frommanaging-frame-gaps.Rmd
usingknitr::rmarkdown
on Dec 27 2024.Last update: 2022-08-18
Started: 2020-09-02