Package: daiquiri 1.1.1.9000

T. Phuong Quan

daiquiri: Data Quality Reporting for Temporal Datasets

Generate reports that enable quick visual review of temporal shifts in record-level data. Time series plots showing aggregated values are automatically created for each data field (column) depending on its contents (e.g. min/max/mean values for numeric data, no. of distinct values for categorical data), as well as overviews for missing values, non-conformant values, and duplicated rows. The resulting reports are shareable and can contribute to forming a transparent record of the entire analysis process. It is designed with Electronic Health Records in mind, but can be used for any type of record-level temporal data (i.e. tabular data where each row represents a single "event", one column contains the "event date", and other columns contain any associated values for the event).

Authors:T. Phuong Quan [aut, cre], Jack Cregan [ctb], University of Oxford [cph], National Institute for Health Research [fnd], Brad Cannell [rev]

daiquiri_1.1.1.9000.tar.gz
daiquiri_1.1.1.9000.zip(r-4.5)daiquiri_1.1.1.9000.zip(r-4.4)daiquiri_1.1.1.9000.zip(r-4.3)
daiquiri_1.1.1.9000.tgz(r-4.4-any)daiquiri_1.1.1.9000.tgz(r-4.3-any)
daiquiri_1.1.1.9000.tar.gz(r-4.5-noble)daiquiri_1.1.1.9000.tar.gz(r-4.4-noble)
daiquiri_1.1.1.9000.tgz(r-4.4-emscripten)daiquiri_1.1.1.9000.tgz(r-4.3-emscripten)
daiquiri.pdf |daiquiri.html
daiquiri/json (API)
NEWS

# Install 'daiquiri' in R:
install.packages('daiquiri', repos = c('https://ropensci.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/ropensci/daiquiri/issues

Pkgdown site:https://docs.ropensci.org

On CRAN:

data-qualityinitial-data-analysisreproducible-researchtemporal-datatime-series

5.94 score 36 stars 12 scripts 738 downloads 20 exports 66 dependencies

Last updated 5 months agofrom:25a7b05a58 (on master). Checks:7 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKDec 31 2024
R-4.5-winOKDec 31 2024
R-4.5-linuxOKDec 31 2024
R-4.4-winOKDec 31 2024
R-4.4-macOKDec 31 2024
R-4.3-winOKDec 31 2024
R-4.3-macOKDec 31 2024

Exports:aggregate_dataclose_logdaiquiri_reportexport_aggregated_datafield_typesfield_types_advancedft_categoricalft_datetimeft_freetextft_ignoreft_numericft_simpleft_strataft_timepointft_uniqueidentifierinitialise_logprepare_dataread_datareport_datatemplate_field_types

Dependencies:base64encbitbit64bslibcachemclicliprcolorspacecowplotcpp11crayondata.tabledigestevaluatefansifarverfastmapfontawesomefsggplot2gluegtablehighrhmshtmltoolshtmlwidgetsisobandjquerylibjsonliteknitrlabelinglatticelifecyclemagrittrMASSMatrixmemoisemgcvmimemunsellnlmepillarpkgconfigprettyunitsprogressR6rappdirsRColorBrewerreactablereactRreadrrlangrmarkdownsassscalestibbletidyselecttinytextzdbutf8vctrsviridisLitevroomwithrxfunyaml

Walkthrough for the daiquiri package

Rendered fromdaiquiri.Rmdusingknitr::rmarkdownon Dec 31 2024.

Last update: 2024-04-04
Started: 2022-06-08

Readme and manuals

Help Manual

Help pageTopics
Aggregate source dataaggregate_data
Close any active log fileclose_log
Create a data quality report from a data framedaiquiri_report
Export aggregated dataexport_aggregated_data
Create field_types specificationfield_types
Create field_types_advanced specificationfield_types_advanced
Types of data fields available for specificationfield_types_available ft_categorical ft_datetime ft_freetext ft_ignore ft_numeric ft_simple ft_strata ft_timepoint ft_uniqueidentifier
Initialise a log fileinitialise_log
Prepare source dataprepare_data
Read delimited data for optimal use with daiquiriread_data
Generate report from existing objectsreport_data
Print a template field_types() specification to consoletemplate_field_types